ترغب بنشر مسار تعليمي؟ اضغط هنا

Population study of Galactic supernova remnants at very high $gamma$-ray energies with H.E.S.S.

150   0   0.0 ( 0 )
 نشر من قبل Joachim Hahn Dr.
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Shell-type supernova remnants (SNRs) are considered prime candidates for the acceleration of Galactic cosmic rays (CRs) up to the knee of the CR spectrum at $mathrm{E} approx mathrm{3}times mathrm{10}^mathrm{15}$ eV. Our Milky Way galaxy hosts more than 350 SNRs discovered at radio wavelengths and at high energies, of which 220 fall into the H.E.S.S. Galactic Plane Survey (HGPS) region. Of those, only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the very high-energy (VHE) emission is firmly identified as an SNR. The H.E.S.S. GPS provides us with a legacy for SNR population study in VHE $gamma$-rays and we use this rich data set to extract VHE flux upper limits from all undetected SNRs. Overall, the derived flux upper limits are not in contradiction with the canonical CR paradigm. Assuming this paradigm holds true, we can constrain typical ambient density values around shell-type SNRs to $nleq 7~textrm{cm}^textrm{-3}$ and electron-to-proton energy fractions above 10~TeV to $epsilon_textrm{ep} leq 5times 10^{-3}$. Furthermore, comparisons of VHE with radio luminosities in non-interacting SNRs reveal a behaviour that is in agreement with the theory of magnetic field amplification at shell-type SNRs.



قيم البحث

اقرأ أيضاً

The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernov a remnants (SNRs) radiating in very-high-energy (VHE, E>100 GeV) gamma-rays. A number of those VHE SNRs exhibit a shell-type morphology spatially coincident with the shock front of the SNR. The members of this VHE shell SNR club are RX J1713.7-3946, Vela Jr, RCW 86, SN 1006, and HESS J1731-347. The latter two objects have been poorly studied in high-energy (HE, 0.1<E<100 GeV) gamma-rays and need to be investigated in order to draw the global picture of this class of SNRs and constrain the characteristics of the underlying population of accelerated particles. Using 6 years of Fermi P7 reprocessed data, we studied the HE counterpart of the SNRs HESS J1731-347 and SN 1006. The two SNRs are not detected in the data and given that there is no hint of detection, we do not expect any detection in the coming years from the SNRs. However in both cases, we derived upper limits that significantly constrain the gamma-ray emission mechanism and can rule out a standard hadronic scenario with a confidence level > 5 sigma. With this Fermi analysis, we now have a complete view of the HE to VHE gamma-ray emission of TeV shell SNRs. All five sources have a hard HE photon index (<1.8) suggesting a common scenario where the bulk of the emission is produced by accelerated electrons radiating from radio to VHE gamma-rays through synchrotron and inverse Compton processes. In addition when correcting for the distance, all SNRs show a surprisingly similar gamma-ray luminosity supporting the idea of a common emission mechanism. While the gamma-ray emission is likely to be leptonic dominated, this does not rule out efficient hadron acceleration in those SNRs.
From radio and higher-frequency observations, more than 300 SNRs have been discovered in the Milky Way, of which 220 fall into the H.E.S.S. Galactic Plane Survey. However only 50 SNRs are coincident with a H.E.S.S source and in 8 cases the VHE emissi on is firmly associated with the SNR. The H.E.S.S. dataset includes now more than 8 years of observations and it is of great interest to extract VHE flux upper limits from undetected SNRs. These new measurements can then be used to test the standard paradigm of the SNRs as the origin of Galactic cosmic rays. In this contribution, the H.E.S.S. results on the population of SNRs and the subsequent constraints on the cosmic-ray acceleration efficiency in these sources will be presented.
Very-high-energy (VHE, E > 100 GeV) gamma radiation has already been detected from several supernova remnants (SNRs). These objects, which are well-studied in radio, optical and X-ray wavelengths, constitute one of the most intriguing source classes in VHE astronomy. H.E.S.S., an array of four imaging atmospheric Cherenkov telescopes in Namibia, has recorded an extensive dataset of VHE gamma-ray observations covering the central region of the Milky Way, both from pointed observations as well as from the Galactic Plane Survey conducted in the inner region of the Galaxy. From radio observations, several hundred SNRs are known in the Milky Way, but until now only few of them have been identified as VHE gamma-ray emitters. Using the H.E.S.S. dataset and a large ensemble of radio SNRs localized in the inner region of the Galaxy, the standard framework that links the origin of cosmic rays to the gamma-ray visibility of SNRs can now be tested. Here we present the ensemble of investigated SNRs and discuss constraints on the parameter space used within a theoretical model of hadronic VHE gamma-ray production.
In the past few years, gamma-ray astronomy has entered a golden age thanks to two major breakthroughs: Cherenkov telescopes on the ground and the Large Area Telescope (LAT) onboard the Fermi satellite. The sample of supernova remnants (SNRs) detected at gamma-ray energies is now much larger: it goes from evolved supernova remnants interacting with molecular clouds up to young shell-type supernova remnants and historical supernova remnants. Studies of SNRs are of great interest, as these analyses are directly linked to the long standing issue of the origin of the Galactic cosmic rays. In this context, pulsar wind nebulae (PWNe) need also to be considered since they evolve in conjunction with SNRs. As a result, they frequently complicate interpretation of the gamma-ray emission seen from SNRs and they could also contribute directly to the local cosmic ray spectrum, particularly the leptonic component. This paper reviews the current results and thinking on SNRs and PWNe and their connection to cosmic ray production.
142 - P. Eger , C. van Eldik 2013
Globular clusters (GCs) are established emitters of high-energy (HE, 100 MeV<E<100 GeV) gamma-ray radiation which could originate from the cumulative emission of the numerous millisecond pulsars (msPSRs) in the clusters cores or from inverse Compton (IC) scattering of relativistic leptons accelerated in the GC environment. GCs could also constitute a new class of sources in the very-high-energy (VHE, E>100 GeV) gamma-ray regime, judging from the recent detection of emission from the direction of Terzan 5 with the H.E.S.S. telescope array. To search for VHE gamma-ray sources associated with other GCs, and to put constraints on leptonic emission models, we systematically analyzed the observations towards 15 GCs taken with H.E.S.S. We searched for individual sources of VHE gamma-rays from each GC in our sample and also performed a stacking analysis combining the data from all GCs to investigate the hypothesis of a population of faint emitters. Assuming IC emission as the source of emission from Terzan 5, we calculated the expected gamma-ray flux for each of the 15 GCs, based on their number of millisecond pulsars, their optical brightness and the energy density of background photon fields. We did not detect significant emission from any of the 15 GCs. The obtained flux upper limits allow to rule out the simple IC/msPSR scaling model for NGC 6388 and NGC 7078. The upper limits derived from the stacking analyses are factors between 2 and 50 below the flux predicted by the simple leptonic model, depending on the assumed source extent and the dominant target photon fields. Therefore, Terzan 5 still remains exceptional among all GCs, as the VHE gamma-ray emission either arises from extra-ordinarily efficient leptonic processes, or from a recent catastrophic event, or is even unrelated to the GC itself.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا