ﻻ يوجد ملخص باللغة العربية
We report the first high-significance GeV gamma-ray detections of supernova remnants HESS J1731-347 and SN 1006, both of which have been previously detected by imaging atmospheric Cherenkov Telescopes above 1 TeV. Using 8 years of Fermi Pass 8 data at energies between 1 GeV and 2 TeV, we detect emission at the position of HESS J1731-347 with a significance of $sim 5sigma$ and a spectral index of $Gamma = 1.66 pm 0.16_{rm stat} pm 0.12_{rm syst}$. The hardness of the index and the good connection with the TeV spectrum of HESS J1731-347 support an association between the two sources. We also confirm the detection of SN 1006 at $sim 6sigma$ with a spectral index of $Gamma = 1.79 pm 0.17_{rm stat} pm 0.27_{rm syst}$. The northeast (NE) and southwest (SW) limbs of SN 1006 were also fit separately, resulting in the detection of the NE region ($Gamma = 1.47 pm 0.26_{rm stat}$) and the non-detection of the SW region. The significance of different spectral components for the two limbs is $3.6sigma$, providing first indications of an asymmetry in the GeV $gamma$-ray emission.
The recent discovery of the radio shell-type supernova remnant (SNR), G353.6-0.7, in spatial coincidence with the unidentified TeV source HESS J1731-347 has motivated further observations of the source with the High Energy Stereoscopic System (H.E.S.
We report the detection of GeV $gamma$-ray emission from supernova remnant HESS J1731-347 using 9 years of {it Fermi} Large Area Telescope data. We find a slightly extended GeV source in the direction of HESS J1731-347. The spectrum above 1 GeV can b
HESS J1731-347 is a shell-type supernova remnant emitting both TeV gamma rays and non-thermal X-ray photons, spatially coincident with the radio SNR G353.6-0.7. Hadronic and leptonic scenarios (or a blend of both) are discussed in the literature to e
The supernova remnant (SNR) HESS J1731-347 is a young SNR which displays a non-thermal X-ray and TeV shell structure. A molecular cloud at a distance of 3.2 kpc is spatially coincident with the western part of the SNR, and it is likely hit by the SNR
The breakthrough developments of Cherenkov telescopes in the last decade have led to angular resolution of 0.1{deg} and an unprecedented sensitivity. This has allowed the current generation of Cherenkov telescopes to discover a population of supernov