ﻻ يوجد ملخص باللغة العربية
The discretization of overdamped Langevin dynamics, through schemes such as the Euler-Maruyama method, can be corrected by some acceptance/rejection rule, based on a Metropolis-Hastings criterion for instance. In this case, the invariant measure sampled by the Markov chain is exactly the Boltzmann-Gibbs measure. However, rejections perturb the dynamical consistency of the resulting numerical method with the reference dynamics. We present in this work some modifications of the standard correction of discretizations of overdamped Langevin dynamics on compact spaces by a Metropolis-Hastings procedure, which allow us to either improve the strong order of the numerical method, or to decrease the bias in the estimation of transport coefficients characterizing the effective dynamical behavior of the dynamics. For the latter approach, we rely on modified numerical schemes together with a Barker rule for the acceptance/rejection criterion.
We consider in this work the numerical computation of transport coefficients for Brownian dynamics. We investigate the discretization error arising when simulating the dynamics with the Smart MC algorithm (also known as Metropolis-adjusted Langevin a
When an external field drives a colloidal system out of equilibrium, the ensuing colloidal response can be very complex and obtaining a detailed physical understanding often requires case-by-case considerations. In order to facilitate systematic anal
We show how to derive a simple integrator for the Langevin equation and illustrate how it is possible to check the accuracy of the obtained distribution on the fly, using the concept of effective energy introduced in a recent paper [J. Chem. Phys. 12
In this work, we consider non-linear corrections to the Langevin effective theory of a heavy quark moving through a strongly coupled CFT plasma. In AdS/CFT, this system can be identified with that of a string stretched between the boundary and the ho
We study the exponential convergence to the stationary state for nonequilibrium Langevin dynamics, by a perturbative approach based on hypocoercive techniques developed for equilibrium Langevin dynamics. The Hamiltonian and overdamped limits (corresp