ﻻ يوجد ملخص باللغة العربية
To detect differences between the mean curves of two samples in longitudinal study or functional data analysis, we usually need to partition the temporal or spatial domain into several pre-determined sub-areas. In this paper we apply the idea of large-scale multiple testing to find the significant sub-areas automatically in a general functional data analysis framework. A nonparametric Gaussian process regression model is introduced for two-sided multiple tests. We derive an optimal test which controls directional false discovery rates and propose a procedure by approximating it on a continuum. The proposed procedure controls directional false discovery rates at any specified level asymptotically. In addition, it is computationally inexpensive and able to accommodate different time points for observations across the samples. Simulation studies are presented to demonstrate its finite sample performance. We also apply it to an executive function research in children with Hemiplegic Cerebral Palsy and extend it to the equivalence tests.
Given the cost and duration of phase III and phase IV clinical trials, the development of statistical methods for go/no-go decisions is vital. In this paper, we introduce a Bayesian methodology to compute the probability of success based on the curre
In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely
A novel approach to perform unsupervised sequential learning for functional data is proposed. Our goal is to extract reference shapes (referred to as templates) from noisy, deformed and censored realizations of curves and images. Our model generalize
The study of the dynamic behavior of cross-sectional ranks over time for functional data and the ranks of the observed curves at each time point and their temporal evolution can yield valuable insights into the time dynamics of functional data. This
In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees and this representation is compared with that offered by persistence diagrams. We show that th