ﻻ يوجد ملخص باللغة العربية
Given the cost and duration of phase III and phase IV clinical trials, the development of statistical methods for go/no-go decisions is vital. In this paper, we introduce a Bayesian methodology to compute the probability of success based on the current data of a treatment regimen for the multivariate linear model. Our approach utilizes a Bayesian seemingly unrelated regression model, which allows for multiple endpoints to be modeled jointly even if the covariates between the endpoints are different. Correlations between endpoints are explicitly modeled. This Bayesian joint modeling approach unifies single and multiple testing procedures under a single framework. We develop an approach to multiple testing that asymptotically guarantees strict family-wise error rate control, and is more powerful than frequentist approaches to multiplicity. The method effectively yields those of Ibrahim et al. and Chuang-Stein as special cases, and, to our knowledge, is the only method that allows for robust sample size determination for multiple endpoints and/or hypotheses and the only method that provides strict family-wise type I error control in the presence of multiplicity.
In neuroimaging, hundreds to hundreds of thousands of tests are performed across a set of brain regions or all locations in an image. Recent studies have shown that the most common family-wise error (FWE) controlling procedures in imaging, which rely
The use of quantiles to obtain insights about multivariate data is addressed. It is argued that incisive insights can be obtained by considering directional quantiles, the quantiles of projections. Directional quantile envelopes are proposed as a way
Graphical models express conditional independence relationships among variables. Although methods for vector-valued data are well established, functional data graphical models remain underdeveloped. We introduce a notion of conditional independence b
We propose a method for multiple hypothesis testing with familywise error rate (FWER) control, called the i-FWER test. Most testing methods are predefined algorithms that do not allow modifications after observing the data. However, in practice, anal
The article develops marginal models for multivariate longitudinal responses. Overall, the model consists of five regression submodels, one for the mean and four for the covariance matrix, with the latter resulting by considering various matrix decom