ﻻ يوجد ملخص باللغة العربية
In this paper we face the problem of representation of functional data with the tools of algebraic topology. We represent functions by means of merge trees and this representation is compared with that offered by persistence diagrams. We show that these two tree structures, although not equivalent, are both invariant under homeomorphic re-parametrizations of the functions they represent, thus allowing for a statistical analysis which is indifferent to functional misalignment. We employ a novel metric for merge trees and we prove a few theoretical results related to its specific implementation when merge trees represent functions. To showcase the good properties of our topological approach to functional data analysis, we first go through a few examples using data generated {em in silico} and employed to illustrate and compare the different representations provided by merge trees and persistence diagrams, and then we test it on the Aneurisk65 dataset replicating, from our different perspective, the supervised classification analysis which contributed to make this dataset a benchmark for methods dealing with misaligned functional data.
We propose modeling raw functional data as a mixture of a smooth function and a highdimensional factor component. The conventional approach to retrieving the smooth function from the raw data is through various smoothing techniques. However, the smoo
Motivated by modeling and analysis of mass-spectrometry data, a semi- and nonparametric model is proposed that consists of a linear parametric component for individual location and scale and a nonparametric regression function for the common shape. A
We propose a nonparametric method to explicitly model and represent the derivatives of smooth underlying trajectories for longitudinal data. This representation is based on a direct Karhunen--Lo`eve expansion of the unobserved derivatives and leads t
This paper introduces the functional tensor singular value decomposition (FTSVD), a novel dimension reduction framework for tensors with one functional mode and several tabular modes. The problem is motivated by high-order longitudinal data analysis.
We propose a new adaptive empirical Bayes framework, the Bag-Of-Null-Statistics (BONuS) procedure, for multiple testing where each hypothesis testing problem is itself multivariate or nonparametric. BONuS is an adaptive and interactive knockoff-type