ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum order by disorder in the Kitaev model on a triangular lattice

259   0   0.0 ( 0 )
 نشر من قبل Adolfo Avella
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanned by decoupled Ising-type chains, and its accidental degeneracy is due to the frustrated nature of the anisotropic spin couplings. We show how this subextensive degeneracy is lifted by a quantum order-by-disorder mechanism and study the quantum selection of the ground state by treating short-wavelength fluctuations within the linked cluster expansion and by using the complementary spin-wave theory. We find that quantum fluctuations couple next-nearest-neighbor chains through an emergent four-spin interaction, while nearest-neighbor chains remain decoupled. The remaining discrete degeneracy of the ground state is shown to be protected by a hidden symmetry of the model.



قيم البحث

اقرأ أيضاً

We study the effects of quantum fluctuations on the dynamical generation of a gap and on the evolution of the spin-wave spectra of a frustrated magnet on a triangular lattice with bond-dependent Ising couplings, analog of the Kitaev honeycomb model. The quantum fluctuations lift the subextensive degeneracy of the classical ground-state manifold by a quantum order-by-disorder mechanism. Nearest-neighbor chains remain decoupled and the surviving discrete degeneracy of the ground state is protected by a hidden model symmetry. We show how the four-spin interaction, emergent from the fluctuations, generates a spin gap shifting the nodal lines of the linear spin-wave spectrum to finite energies.
We observe a disappearance of the 1/3 magnetization plateau and a striking change of the magnetic configuration under a moderate doping of the model triangular antiferromagnet RbFe(MoO4)2. The reason is an effective lifting of degeneracy of mean-fiel d ground states by a random potential of impurities, which compensates, in the low temperature limit, the fluctuation contribution to free energy. These results provide a direct experimental confirmation of the fluctuation origin of the ground state in a real frustrated system. The change of the ground state to a least collinear configuration reveals an effective positive biquadratic exchange provided by the structural disorder. On heating, doped samples regain the structure of a pure compound thus allowing for an investigation of the remarkable competition between thermal and structural disorder.
We present a Quantum Monte Carlo study of the Ising model in a transverse field on a square lattice with nearest-neighbor antiferromagnetic exchange interaction J and one diagonal second-neighbor interaction $J$, interpolating between square-lattice ($J=0$) and triangular-lattice ($J=J$) limits. At a transverse-field of $B_x=J$, the disorder-line first introduced by Stephenson, where the correlations go from Neel to incommensurate, meets the zero temperature axis at $Japprox 0.7 J$. Strong evidence is provided that the incommensurate phase at larger $J$, at finite temperatures, is a floating phase with power-law decaying correlations. We sketch a general phase-diagram for such a system and discuss how our work connects with the previous Quantum Monte Carlo work by Isakov and Moessner for the isotropic triangular lattice ($J=J$). For the isotropic triangular-lattice, we also obtain the entropy function and constant entropy contours using a mix of Quantum Monte Carlo, high-temperature series expansions and high-field expansion methods and show that phase transitions in the model in presence of a transverse field occur at very low entropy.
We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling $K_2$, which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iri date Na$_2$IrO$_3$, and may also play a role in $alpha$-RuCl$_3$ and Li$_2$IrO$_3$. This coupling naturally explains the zigzag ordering (without introducing unrealistically large longer-range Heisenberg exchange terms) and the special entanglement between real and spin space observed recently in Na$_2$IrO$_3$. Moreover, the minimal $K_1$-$K_2$ model that we present here holds the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to the fundamentally different symmetries of the classical and quantum counterparts.
We study the half-filled Hubbard model on the triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a $120^circ$ magnetic o rder, a nonmagnetic insulator (NMI), and an interacting Chern insulator (CI) with a nonzero Chern number. The transition from CI to NMI is characterized by the change of the charge gap from an indirect band gap to a direct Mott gap. Based on the slave-rotor mean-field theory, the NMI phase is further suggested to be a gapless Mott insulator with a spinon Fermi surface or a fractionalized CI with nontrivial spinon topology, depending on the strength of Kitaev-like hopping. Our work highlights the rising field that interesting phases emerge from the interplay of band topology and Mott physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا