ﻻ يوجد ملخص باللغة العربية
We show that the topological Kitaev spin liquid on the honeycomb lattice is extremely fragile against the second-neighbor Kitaev coupling $K_2$, which has recently been shown to be the dominant perturbation away from the nearest-neighbor model in iridate Na$_2$IrO$_3$, and may also play a role in $alpha$-RuCl$_3$ and Li$_2$IrO$_3$. This coupling naturally explains the zigzag ordering (without introducing unrealistically large longer-range Heisenberg exchange terms) and the special entanglement between real and spin space observed recently in Na$_2$IrO$_3$. Moreover, the minimal $K_1$-$K_2$ model that we present here holds the unique property that the classical and quantum phase diagrams and their respective order-by-disorder mechanisms are qualitatively different due to the fundamentally different symmetries of the classical and quantum counterparts.
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne
Quantum spin liquid involves fractionalized quasipariticles such as spinons and visons. They are expressed as itinerant Majorana fermions and $Z_2$ fluxes in the Kitaev model with bond-dependent exchange interactions on a honeycomb spin lattice. The
Quantum spin liquid is a disordered magnetic state with fractional spin excitations. Its clearest example is found in an exactly solved Kitaev honeycomb model where a spin flip fractionalizes into two types of anyons, quasiparticles that are neither
The layered honeycomb iridate $alpha$-Li$_2$IrO$_3$ displays an incommensurate magnetic structure with counterrotating moments on nearest-neighbor sites, proposed to be stabilized by strongly-frustrated anisotropic Kitaev interactions between spin-or
We study the Kitaev-Heisenberg-$Gamma$ model with antiferromagnetic Kitaev exchanges in the strong anisotropic (toric code) limit to understand the phases and the intervening phase transitions between the gapped $Z_2$ quantum spin liquid and the spin