ﻻ يوجد ملخص باللغة العربية
We present a Quantum Monte Carlo study of the Ising model in a transverse field on a square lattice with nearest-neighbor antiferromagnetic exchange interaction J and one diagonal second-neighbor interaction $J$, interpolating between square-lattice ($J=0$) and triangular-lattice ($J=J$) limits. At a transverse-field of $B_x=J$, the disorder-line first introduced by Stephenson, where the correlations go from Neel to incommensurate, meets the zero temperature axis at $Japprox 0.7 J$. Strong evidence is provided that the incommensurate phase at larger $J$, at finite temperatures, is a floating phase with power-law decaying correlations. We sketch a general phase-diagram for such a system and discuss how our work connects with the previous Quantum Monte Carlo work by Isakov and Moessner for the isotropic triangular lattice ($J=J$). For the isotropic triangular-lattice, we also obtain the entropy function and constant entropy contours using a mix of Quantum Monte Carlo, high-temperature series expansions and high-field expansion methods and show that phase transitions in the model in presence of a transverse field occur at very low entropy.
We identify and discuss the ground state of a quantum magnet on a triangular lattice with bond-dependent Ising-type spin couplings, that is, a triangular analog of the Kitaev honeycomb model. The classical ground-state manifold of the model is spanne
We investigate the extended hard-core Bose-Hubbard model on the triangular lattice as a function of spatial anisotropy with respect to both tunneling and nearest-neighbor interaction strength. At half-filling the system can be tuned from decoupled on
Spin liquids occuring in 2D frustrated spin systems were initially assumed to appear at strongest frustration, but evidence grows that they more likely intervene at transitions between two different types of order. To identify if this is more general
Obtaining quantitative ground-state behavior for geometrically-frustrated quantum magnets with long-range interactions is challenging for numerical methods. Here, we demonstrate that the ground states of these systems on two-dimensional lattices can
We study the half-filled Hubbard model on the triangular lattice with spin-dependent Kitaev-like hopping. Using the variational cluster approach, we identify five phases: a metallic phase, a non-coplanar chiral magnetic order, a $120^circ$ magnetic o