ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry of Winter Model

91   0   0.0 ( 0 )
 نشر من قبل Ugo Aglietti UA
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in which the model has an infinite tower of long-lived resonant states. The problem of constructing proper initial wavefunctions coupled to single excitations of the model is also treated within perturbative and non-perturbative methods.



قيم البحث

اقرأ أيضاً

We develop an efficient method to compute the torus partition function of the six-vertex model exactly for finite lattice size. The method is based on the algebro-geometric approach to the resolution of Bethe ansatz equations initiated in a previous work, and on further ingredients introduced in the present paper. The latter include rational $Q$-system, primary decomposition, algebraic extension and Galois theory. Using this approach, we probe new structures in the solution space of the Bethe ansatz equations which enable us to boost the efficiency of the computation. As an application, we study the zeros of the partition function in a partial thermodynamic limit of $M times N$ tori with $N gg M$. We observe that for $N to infty$ the zeros accumulate on some curves and give a numerical method to generate the curves of accumulation points.
80 - Fedele Lizzi 2018
We review the noncommutative approach to the standard model. We start with the introduction if the mathematical concepts necessary for the definition of noncommutative spaces, and manifold in particular. This defines the framework of spectral geometr y. This is applied to the standard model of particle interaction, discussing the fermionic and bosonic spectral action. The issues relating to the calculation of the mass of the Higgs are discussed, as well as the role of neutrinos and Wick rotations. Finally, we present the possibility of solving the problem of the Higgs mass by considering a pregeometric grand symmetry.
145 - L. Castellani , R. Catenacci , 2015
We construct the Hodge dual for supermanifolds by means of the Grassmannian Fourier transform of superforms. In the case of supermanifolds it is known that the superforms are not sufficient to construct a consistent integration theory and that the in tegral forms are needed. They are distribution-like forms which can be integrated on supermanifolds as a top form can be integrated on a conventional manifold. In our construction of the Hodge dual of superforms they arise naturally. The compatibility between Hodge duality and supersymmetry is exploited and applied to several examples. We define the irreducible representations of supersymmetry in terms of integral and superforms in a new way which can be easily generalised to several models in different dimensions. The construction of supersymmetric actions based on the Hodge duality is presented and new supersymmetric actions with higher derivative terms are found. These terms are required by the invertibility of the Hodge operator.
Recent works have revealed that the recipe for field-antifield quantization of Lagrangian gauge theories can be considerably relaxed when it comes to choosing a path integral measure rho if a zero-order term u_{rho} is added to the Delta operator. T he effects of this odd scalar term u_{rho} become relevant at two-loop order. We prove that u_{rho} is essentially the odd scalar curvature of an arbitrary torsion-free connection that is compatible with both the anti-Poisson structure E and the density rho. This extends a previous result for non-degenerate antisymplectic manifolds to degenerate anti-Poisson manifolds that admit a compatible two-form.
152 - K. Bering 2008
We consider Khudaverdians geometric version of a Batalin-Vilkovisky (BV) operator Delta_E in the case of a degenerate anti-Poisson manifold. The characteristic feature of such an operator (aside from being a Grassmann-odd, nilpotent, second-order dif ferential operator) is that it sends semidensities to semidensities. We find a local formula for the Delta_E operator in arbitrary coordinates. As an important application of this setup, we consider the Dirac antibracket on an antisymplectic manifold with antisymplectic second-class constraints. We show that the entire Dirac construction, including the corresponding Dirac BV operator Delta_{E_D}, exactly follows from conversion of the antisymplectic second-class constraints into first-class constraints on an extended manifold.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا