ﻻ يوجد ملخص باللغة العربية
We construct the Hodge dual for supermanifolds by means of the Grassmannian Fourier transform of superforms. In the case of supermanifolds it is known that the superforms are not sufficient to construct a consistent integration theory and that the integral forms are needed. They are distribution-like forms which can be integrated on supermanifolds as a top form can be integrated on a conventional manifold. In our construction of the Hodge dual of superforms they arise naturally. The compatibility between Hodge duality and supersymmetry is exploited and applied to several examples. We define the irreducible representations of supersymmetry in terms of integral and superforms in a new way which can be easily generalised to several models in different dimensions. The construction of supersymmetric actions based on the Hodge duality is presented and new supersymmetric actions with higher derivative terms are found. These terms are required by the invertibility of the Hodge operator.
We revisit the definition of the 6j-symbols from the modular double of U_q(sl(2,R)), referred to as b-6j symbols. Our new results are (i) the identification of particularly natural normalization conditions, and (ii) new integral representations for t
We present few types of integral transforms and integral representations that are very useful for extending to supergeometry many familiar concepts of differential geometry. Among them we discuss the construction of the super Hodge dual, the integral
This note announces results on the relations between the approach of Beilinson and Drinfeld to the geometric Langlands correspondence based on conformal field theory, the approach of Kapustin and Witten based on $N=4$ SYM, and the AGT-correspondence.
We focus on the geometrical reformulation of free higher spin supermultiplets in $4rm{D},~mathcal{N}=1$ flat superspace. We find that there is a de Wit-Freedman like hierarchy of superconnections with simple gauge transformations. The requirement for
Integral forms provide a natural and powerful tool for the construction of supergravity actions. They are generalizations of usual differential forms and are needed for a consistent theory of integration on supermanifolds. The group geometrical appro