ﻻ يوجد ملخص باللغة العربية
We develop an efficient method to compute the torus partition function of the six-vertex model exactly for finite lattice size. The method is based on the algebro-geometric approach to the resolution of Bethe ansatz equations initiated in a previous work, and on further ingredients introduced in the present paper. The latter include rational $Q$-system, primary decomposition, algebraic extension and Galois theory. Using this approach, we probe new structures in the solution space of the Bethe ansatz equations which enable us to boost the efficiency of the computation. As an application, we study the zeros of the partition function in a partial thermodynamic limit of $M times N$ tori with $N gg M$. We observe that for $N to infty$ the zeros accumulate on some curves and give a numerical method to generate the curves of accumulation points.
We show that the height function of the six-vertex model, in the parameter range $mathbf a=mathbf b=1$ and $mathbf cge1$, is delocalized with logarithmic variance when $mathbf cle 2$. This complements the earlier proven localization for $mathbf c>2$.
We study numerically the two-point correlation functions of height functions in the six-vertex model with domain wall boundary conditions. The correlation functions and the height functions are computed by the Markov chain Monte-Carlo algorithm. Part
We study properties of the full partition function for the $U(1)$ 5D $mathcal{N}=2^*$ gauge theory with adjoint hypermultiplet of mass $M$. This theory is ultimately related to abelian 6D (2,0) theory. We construct the full non-perturbative partition
By constructing the Riemann surface controlling the resonance structure of Winter model, we determine the limitations of perturbation theory. We then derive explicit non-perturbative results for various observables in the weak-coupling regime, in whi
The inhomogeneous six-vertex model is a 2$D$ multiparametric integrable statistical system. In the scaling limit it is expected to cover different classes of critical behaviour which, for the most part, have remained unexplored. For general values of