ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular ions in the O-rich evolved star OH231.8+4.2: HCO$^+$,H$^{13}$CO$^+$ and first detection of SO$^+$, N$_2$H$^+$, and H$_3$O$^+$

110   0   0.0 ( 0 )
 نشر من قبل Carmen Sanchez Contreras
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

OH 231.8+4.2, a bipolar outflow around a Mira-type variable star, displays a unique molecular richness amongst circumstellar envelopes (CSEs) around O-rich AGB and post-AGB stars. We report line observations of the HCO+ and H13CO+ molecular ions and the first detection of SO+, N2H+, and (tentatively) H3O+ in this source. SO+ and H3O+ have not been detected before in CSEs around evolved stars. These data have been obtained as part of a full mm-wave and far-IR spectral line survey carried out with the IRAM 30 m radio telescope and with Herschel/HIFI. Except for H3O+, all the molecular ions detected in this work display emission lines with broad profiles (FWHM 50-90 km/s), which indicates that these ions are abundant in the fast bipolar outflow of OH 231.8. The narrow profile (FWHM 14 km/s) and high critical densities (>1e6cm-3 ) of the H3O+ transitions observed are consistent with this ion arising from denser, inner (and presumably warmer) layers of the fossil remnant of the slow AGB CSE at the core of the nebula. From rotational diagram analysis, we deduce excitation temperatures of Tex 10-20 K for all ions except for H3O+, which is most consistent with Tex 100 K. Although uncertain, the higher excitation temperature suspected for H3O+ is similar to that recently found for H2O and a few other molecules, which selectively trace a previously unidentified, warm nebular component.The column densities of the molecular ions reported here are in the range Ntot [1-8]x1e13 cm-2, leading to beam-averaged fractional abundances relative to H2 of X(HCO+) 1e-8, X(H13CO+) 2e-9, X(SO+) 4e-9, X(N2H+) 2e-9, and X(H3O+) 7e-9 cm-2. We have performed chemical kinetics models to investigate the formation of these ions in OH 231.8 as the result of standard gas phase reactions initiated by cosmic-ray and UV-photon ionization. (abridged).



قيم البحث

اقرأ أيضاً

The earliest atmospheres of rocky planets originate from extensive volatile release during magma ocean epochs that occur during assembly of the planet. These establish the initial distribution of the major volatile elements between different chemical reservoirs that subsequently evolve via geological cycles. Current theoretical techniques are limited in exploring the anticipated range of compositional and thermal scenarios of early planetary evolution, even though these are of prime importance to aid astronomical inferences on the environmental context and geological history of extrasolar planets. Here, we present a coupled numerical framework that links an evolutionary, vertically-resolved model of the planetary silicate mantle with a radiative-convective model of the atmosphere. Using this method we investigate the early evolution of idealized Earth-sized rocky planets with end-member, clear-sky atmospheres dominated by either H$_2$, H$_2$O, CO$_2$, CH$_4$, CO, O$_2$, or N$_2$. We find central metrics of early planetary evolution, such as energy gradient, sequence of mantle solidification, surface pressure, or vertical stratification of the atmosphere, to be intimately controlled by the dominant volatile and outgassing history of the planet. Thermal sequences fall into three general classes with increasing cooling timescale: CO, N$_2$, and O$_2$ with minimal effect, H$_2$O, CO$_2$, and CH$_4$ with intermediate influence, and H$_2$ with several orders of magnitude increase in solidification time and atmosphere vertical stratification. Our numerical experiments exemplify the capabilities of the presented modeling framework and link the interior and atmospheric evolution of rocky exoplanets with multi-wavelength astronomical observations.
We present a generally-applicable computational framework for the efficient and accurate characterization of molecular structural patterns and acid properties in explicit solvent using H$_2$O$_2$ and CH$_3$SO$_3$H in phenol as an example. In order to address the challenges posed by the complexity of the problem, we resort to a set of data-driven methods and enhanced sampling algorithms. The synergistic application of these techniques makes the first-principle estimation of the chemical properties feasible without renouncing to the use of explicit solvation, involving extensive statistical sampling. Ensembles of neural network potentials are trained on a set of configurations carefully selected out of preliminary simulations performed at a low-cost density-functional tight-binding (DFTB) level. The energy and forces of these configurations are then recomputed at the hybrid density functional theory (DFT) level and used to train the neural networks. The stability of the NN model is enhanced by using DFTB energetics as a baseline, but the efficiency of the direct NN (i.e., baseline-free) is exploited via a multiple-time step integrator. The neural network potentials are combined with enhanced sampling techniques, such as replica exchange and metadynamics, and used to characterize the relevant protonated species and dominant non-covalent interactions in the mixture, also considering nuclear quantum effects.
Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H$_2$O in deeply-embedded interm ediate-mass YSOs and compare with low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with bolometric luminosities of $L_mathrm{bol}sim10^2 - 10^3$ $L_odot$. The maps cover spatial scales of $sim 10^4$ AU in several CO and H$_2$O lines located in the $sim55-210$ $mu$m range. Results: Rotational diagrams of CO show two temperature components at $T_mathrm{rot}sim320$ K and $T_mathrm{rot}sim700-800$ K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H$_2$O show a single component at $T_mathrm{rot}sim130$ K, as seen in low-mass protostars, and about $100$ K lower than in high-mass protostars. Since the uncertainties in $T_mathrm{rot}$ are of the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity, or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central $10^{3}$ AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at $3cdot10^{3}$ AU scales, suggesting similar shock conditions in all those sources.
The chemical pathways linking the small organic molecules commonly observed in molecular clouds to the large, complex, polycyclic species long-suspected to be carriers of the ubiquitous unidentified infrared emission bands remain unclear. To investig ate whether the formation of mono- and poly-cyclic molecules observed in cold cores could form via the bottom-up reaction of ubiquitous carbon-chain species with, e.g. atomic hydrogen, a search is made for possible intermediates in data taken as part of the GOTHAM (GBT Observations of TMC-1 Hunting for Aromatic Molecules) project. Markov-Chain Monte Carlo (MCMC) Source Models were run to obtain column densities and excitation temperatures. Astrochemical models were run to examine possible formation routes, including a novel grain-surface pathway involving the hydrogenation of C$_6$N and HC$_6$N, as well as purely gas-phase reactions between C$_3$N and both propyne (CH$_3$CCH) and allene (CH$_2$CCH$_2$), as well as via the reaction CN + H$_2$CCCHCCH. We report the first detection of cyanoacetyleneallene (H$_2$CCCHC$_3$N) in space toward the TMC-1 cold cloud using the Robert C. Byrd 100 m Green Bank Telescope (GBT). Cyanoacetyleneallene may represent an intermediate between less-saturated carbon-chains, such as the cyanopolyynes, that are characteristic of cold cores and the more recently-discovered cyclic species like cyanocyclopentadiene. Results from our models show that the gas-phase allene-based formation route in particular produces abundances of H$_2$CCCHC$_3$N that match the column density of $2times10^{11}$ cm$^{-2}$ obtained from the MCMC Source Model, and that the grain-surface route yields large abundances on ices that could potentially be important as precursors for cyclic molecules.
We report observations of the reactive molecular ions OH$^+$, H$_2$O$^+$, and H$_3$O$^+$ towards Orion KL with Herschel/HIFI. All three $N=1-0$ fine-structure transitions of OH$^+$ at 909, 971, and 1033GHz and both fine-structure components of the do ublet {it ortho}-H$_2$O$^+$ $1_{11}-0_{00}$ transition at 1115 and 1139GHz were detected; an upper limit was obtained for H$_3$O$^+$. OH$^+$ and H$_2$O$^+$ are observed purely in absorption, showing a narrow component at the source velocity of 9 kms$^{-1}$, and a broad blueshifted absorption similar to that reported recently for HF and {it para}-H$_{2}^{18}$O, and attributed to the low velocity outflow of Orion KL. We estimate column densities of OH$^+$ and H$_2$O$^+$ for the 9 km s$^{-1}$ component of $9 pm 3 times 10^{12}$cm$^{-2}$ and $7 pm 2 times 10^{12}$cm$^{-2}$, and those in the outflow of $1.9 pm 0.7 times 10^{13}$cm$^{-2}$ and $1.0 pm 0.3 times 10^{13}$cm$^{-2}$. Upper limits of $2.4times 10^{12}$cm$^{-2}$ and $8.7times 10^{12}$cm$^{-2}$ were derived for the column densities of {it ortho} and {it para}-H$_3$O$^+$ from transitions near 985 and 1657GHz. The column densities of the three ions are up to an order of magnitude lower than those obtained from recent observations of W31C and W49N. The comparatively low column densities may be explained by a higher gas density despite the assumption of a very high ionization rate.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا