ترغب بنشر مسار تعليمي؟ اضغط هنا

Far infrared CO and H$_2$O emission in intermediate-mass protostars

155   0   0.0 ( 0 )
 نشر من قبل Agata Karska
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Intermediate-mass young stellar objects (YSOs) provide a link to understand how feedback from shocks and UV radiation scales from low to high-mass star forming regions. Aims: Our aim is to analyze excitation of CO and H$_2$O in deeply-embedded intermediate-mass YSOs and compare with low-mass and high-mass YSOs. Methods: Herschel/PACS spectral maps are analyzed for 6 YSOs with bolometric luminosities of $L_mathrm{bol}sim10^2 - 10^3$ $L_odot$. The maps cover spatial scales of $sim 10^4$ AU in several CO and H$_2$O lines located in the $sim55-210$ $mu$m range. Results: Rotational diagrams of CO show two temperature components at $T_mathrm{rot}sim320$ K and $T_mathrm{rot}sim700-800$ K, comparable to low- and high-mass protostars probed at similar spatial scales. The diagrams for H$_2$O show a single component at $T_mathrm{rot}sim130$ K, as seen in low-mass protostars, and about $100$ K lower than in high-mass protostars. Since the uncertainties in $T_mathrm{rot}$ are of the same order as the difference between the intermediate and high-mass protostars, we cannot conclude whether the change in rotational temperature occurs at a specific luminosity, or whether the change is more gradual from low- to high-mass YSOs. Conclusions: Molecular excitation in intermediate-mass protostars is comparable to the central $10^{3}$ AU of low-mass protostars and consistent within the uncertainties with the high-mass protostars probed at $3cdot10^{3}$ AU scales, suggesting similar shock conditions in all those sources.



قيم البحث

اقرأ أيضاً

OH is a key species in the water chemistry of star-forming regions, because its presence is tightly related to the formation and destruction of water. This paper presents OH observations from 23 low- and intermediate-mass young stellar objects obtain ed with the PACS integral field spectrometer on-board Herschel in the context of the Water In Star-forming Regions with Herschel (WISH) key program. Most low-mass sources have compact OH emission (< 5000 AU scale), whereas the OH lines in most intermediate-mass sources are extended over the whole PACS detector field-of-view (> 20000 AU). The strength of the OH emission is correlated with various source properties such as the bolometric luminosity and the envelope mass, but also with the OI and H2O emission. Rotational diagrams for sources with many OH lines show that the level populations of OH can be approximated by a Boltzmann distribution with an excitation temperature at around 70 K. Radiative transfer models of spherically symmetric envelopes cannot reproduce the OH emission fluxes nor their broad line widths, strongly suggesting an outflow origin. Slab excitation models indicate that the observed excitation temperature can either be reached if the OH molecules are exposed to a strong far-infrared continuum radiation field or if the gas temperature and density are sufficiently high. Using realistic source parameters and radiation fields, it is shown for the case of Ser SMM1 that radiative pumping plays an important role in transitions arising from upper level energies higher than 300 K. The compact emission in the low-mass sources and the required presence of a strong radiation field and/or a high density to excite the OH molecules points towards an origin in shocks in the inner envelope close to the protostar.
We investigate the evolution of far-IR CO emission from protostars observed with Herschel/PACS for 50 sources from the combined sample of HOPS and DIGIT Herschel key programs. From the uniformly sampled spectral energy distributions, we computed $L_{ rm{bol}}$, $T_{rm{bol}}$ and $L_{rm {bol}}/L_{rm {smm}}$ for these sources to search for correlations between far-IR CO emission and protostellar properties. We find a strong and tight correlation between far-IR CO luminosity ($L^{rm fir}_{rm CO}$) and the bolometric luminosity ($L_{rm{bol}}$) of the protostars with $L^{rm fir}_{rm CO}$ $propto$ $L_{rm{bol}}^{0.7}$. We, however, do not find a strong correlation between $L^{rm fir}_{rm CO}$ and protostellar evolutionary indicators, $T_{rm{bol}}$ and $L_{rm {bol}}/L_{rm {smm}}$. FIR CO emission from protostars traces the currently shocked gas by jets/outflows, and $L^{rm fir}_{rm CO}$ is proportional to the instantaneous mass loss rate, $dot{M}_{rm{out}}$. The correlation between $L^{rm fir}_{rm CO}$ and $L_{rm{bol}}$ is indicative of instantaneous $dot{M}_{rm{out}}$ tracking instantaneous $dot{M}_{rm{acc}}$. The lack of correlation between $L^{rm fir}_{rm CO}$ and evolutionary indicators $T_{rm{bol}}$ and $L_{rm {bol}}/L_{rm {smm}}$ suggests that $dot{M}_{rm{out}}$ and, therefore, $dot{M}_{rm{acc}}$ do not show any clear evolutionary trend. These results are consistent with mass accretion/ejection in protostars being episodic. Taken together with the previous finding that the time-averaged mass ejection/accretion rate declines during the protostellar phase (e.g., Bontemps et al. 1996), our results suggest that the instantaneous accretion/ejection rate of protostars is highly time variable and episodic, but the amplitude and/or frequency of this variability decreases with time such that the time averaged accretion/ejection rate declines with system age.
We present near infrared spectroscopic observations of 19 molecular clouds made using the AKARI satellite, and the data reduction pipeline written to analyse those observations. The 2.5 --~5 $mu$m spectra of 30 objects -- 22 field stars behind quiesc ent molecular clouds and eight low mass YSOs in cores -- were successfully extracted using the pipeline. Those spectra are further analysed to calculate the column densities of key solid phase molecular species, including H$_2$O, CO$_2$, CO, and OCN$^-$. The profile of the H$_2$O ice band is seen to vary across the objects observed and we suggest that the extended red wing may be an evolutionary indicator of both dust and ice mantle properties. The observation of 22 spectra with fluxes as low as $<$~5 mJy towards background stars, including 15 where the column densities of H$_2$O, CO and CO$_2$ were calculated, provides valuable data that could help to benchmark the initial conditions in star-forming regions prior to the onset of star formation.
Episodic accretion has been used to explain the wide range of protostellar luminosities, but its origin and influence on the star forming process are not yet fully understood. We present an ALMA survey of N$_2$H$^+$ ($1-0$) and HCO$^+$ ($3-2$) toward 39 Class 0 and Class I sources in the Perseus molecular cloud. N$_2$H$^+$ and HCO$^+$ are destroyed via gas-phase reactions with CO and H$_2$O, respectively, thus tracing the CO and H$_2$O snowline locations. A snowline location at a much larger radius than that expected from the current luminosity suggests that an accretion burst has occurred in the past which has shifted the snowline outward. We identified 18/18 Class 0 and 9/10 Class I post-burst sources from N$_2$H$^+$, and 7/17 Class 0 and 1/8 Class I post-burst sources from HCO$^+$.The accretion luminosities during the past bursts are found to be $sim10-100~L_odot$. This result can be interpreted as either evolution of burst frequency or disk evolution. In the former case, assuming that refreeze-out timescales are 1000 yr for ce{H2O} and 10,000 yr for CO, we found that the intervals between bursts increases from 2400 yr in the Class 0 to 8000 yr in the Class I stage. This decrease in the burst frequency may reflect that fragmentation is more likely to occur at an earlier evolutionary stage when the young stellar object is more prone to instability.
We report the first interferomteric detection of 183 GHz water emission in the low-mass protostar Serpens SMM1 using the Submillimeter Array with a resolution of 3$$ and rms of $sim$7 Jy in a 3 km s$^{-1}$ bin. Due to the small size and high brightne ssof more than 240 Jy/beam, it appears to be maser emission. In total three maser spots were detected out to $sim$ 700 AU from the central protostar, lying along the red-shifted outflow axis, outside the circumstellar disk but within the envelope region as evidenced by the continuum measurements. Two of the maser spots appear to be blue-shifted by about 1 to 2 km s$^{-1}$. No extended or compact thermal emission from a passively heated protostellar envelope was detected with a limit of 7 Jy (16 K), in agreement with recent modelling efforts. We propose that the maser spots originate within the cavity walls due to the interaction of the outflow jet with the surrounding protostellar envelope. Hydrodynamical models predict that such regions can be dense and warm enough to invert the 183 GHz water transition.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا