ترغب بنشر مسار تعليمي؟ اضغط هنا

Modeling atmospheric emission for CMB ground-based observations

137   0   0.0 ( 0 )
 نشر من قبل Josquin Errard
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atmosphere is one of the most important noise sources for ground-based cosmic microwave background (CMB) experiments. By increasing optical loading on the detectors, it amplifies their effective noise, while its fluctuations introduce spatial and temporal correlations between detected signals. We present a physically motivated 3d-model of the atmosphere total intensity emission in the millimeter and sub-millimeter wavelengths. We derive a new analytical estimate for the correlation between detectors time-ordered data as a function of the instrument and survey design, as well as several atmospheric parameters such as wind, relative humidity, temperature and turbulence characteristics. Using an original numerical computation, we examine the effect of each physical parameter on the correlations in the time series of a given experiment. We then use a parametric-likelihood approach to validate the modeling and estimate atmosphere parameters from the POLARBEAR-I project first season data set. We derive a new 1.0% upper limit on the linear polarization fraction of atmospheric emission. We also compare our results to previous studies and weather station measurements. The proposed model can be used for realistic simulations of future ground-based CMB observations.



قيم البحث

اقرأ أيضاً

We compute the circularly polarized signal from atmospheric molecular oxygen. Polarization of O2 rotational lines is caused by Zeeman effect in the Earth magnetic field. We evaluate the circularly polarized emission for various sites suitable for CMB measurements: South Pole and Dome C (Antarctica), Atacama (Chile) and Testa Grigia (Italy). An analysis of the polarized signal is presented and discussed in the framework of future CMB polarization experiments. We find a typical circularly polarized signal (V Stokes parameter) of ~ 50 - 300 {mu}K at 90 GHz looking at the zenith. Among the other sites Atacama shows the lower polarized signal at the zenith. We present maps of this signal for the various sites and show typical elevation and azimuth scans. We find that Dome C presents the lowest gradient in polarized temperature: ~ 0.3 {mu}K/circ at 90 GHz. We also study the frequency bands of observation: around { u} simeq 100 GHz and { u} simeq 160 GHz we find the best conditions because the polarized signal vanishes. Finally we evaluate the accuracy of the templates and the signal variability in relation with the knowledge and the variability of the Earth magnetic field and the atmospheric parameters.
The polarization of the atmosphere has been a long-standing concern for ground-based experiments targeting cosmic microwave background (CMB) polarization. Ice crystals in upper tropospheric clouds scatter thermal radiation from the ground and produce a horizontally-polarized signal. We report the detailed analysis of the cloud signal using a ground-based CMB experiment, POLARBEAR, located at the Atacama desert in Chile and observing at 150 GHz. We observe horizontally-polarized temporal increases of low-frequency fluctuations (polarized bursts, hereafter) of $lesssim$0.1 K when clouds appear in a webcam monitoring the telescope and the sky. The hypothesis of no correlation between polarized bursts and clouds is rejected with $>$24$sigma$ statistical significance using three years of data. We consider many other possibilities including instrumental and environmental effects, and find no other reasons other than clouds that can explain the data better. We also discuss the impact of the cloud polarization on future ground-based CMB polarization experiments.
The Atacama Cosmology Telescope Polarimeter (ACTPol) is a polarization sensitive upgrade to the Atacama Cosmology Telescope. Located at an elevation of 5190 m, ACTPol measures the Cosmic Microwave Background (CMB) temperature and polarization with ar cminute-scale angular resolution. Calibration of the detector angles is a critical step in producing maps of the CMB polarization. Polarization angle offsets in the detector calibration can cause leakage in polarization from E to B modes and induce a spurious signal in the EB and TB cross correlations, which eliminates our ability to measure potential cosmological sources of EB and TB signals, such as cosmic birefringence. We present our optical modeling and measurements associated with calibrating the detector angles in ACTPol.
Around the world, several scientific projects share the interest of a global network of small Cherenkov telescopes for monitoring observations of the brightest blazars - the DWARF network. A small, ground based, imaging atmospheric Cherenkov telescop e of last generation is intended to be installed and operated in Romania as a component of the DWARF network. To prepare the construction of the observatory, two support projects have been initiated. Within the framework of these projects, we have assessed a number of possible sites where to settle the observatory. In this paper we submit a brief report on the general characteristics of the best four sites selected after the local infrastructure, the nearby facilities and the social impact criteria have been applied.
High-contrast imaging observations are fundamentally limited by the spatially and temporally correlated noise source called speckles. Suppression of speckle noise is the key goal of wavefront control and adaptive optics (AO), coronagraphy, and a host of post-processing techniques. Speckles average at a rate set by the statistical speckle lifetime, and speckle-limited integration time in long exposures is directly proportional to this lifetime. As progress continues in post-coronagraph wavefront control, residual atmospheric speckles will become the limiting noise source in high-contrast imaging, so a complete understanding of their statistical behavior is crucial to optimizing high-contrast imaging instruments. Here we present a novel power spectral density (PSD) method for calculating the lifetime, and develop a semi-analytic method for predicting intensity PSDs behind a coronagraph. Considering a frozen-flow turbulence model, we analyze the residual atmosphere speckle lifetimes in a MagAO-X-like AO system as well as 25--39 m giant segmented mirror telescope (GSMT) scale systems. We find that standard AO control shortens atmospheric speckle lifetime from ~130 ms to ~50 ms, and predictive control will further shorten the lifetime to ~20 ms on 6.5 m MagAO-X. We find that speckle lifetimes vary with diameter, wind speed, seeing, and location within the AO control region. On bright stars lifetimes remain within a rough range of ~20 ms to ~100 ms. Due to control system dynamics there are no simple scaling laws which apply across a wide range of system characteristics. Finally, we use these results to argue that telemetry-based post-processing should enable ground-based telescopes to achieve the photon-noise limit in high-contrast imaging.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا