ترغب بنشر مسار تعليمي؟ اضغط هنا

Measurements of tropospheric ice clouds with a ground-based CMB polarization experiment, POLARBEAR

69   0   0.0 ( 0 )
 نشر من قبل Satoru Takakura
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The polarization of the atmosphere has been a long-standing concern for ground-based experiments targeting cosmic microwave background (CMB) polarization. Ice crystals in upper tropospheric clouds scatter thermal radiation from the ground and produce a horizontally-polarized signal. We report the detailed analysis of the cloud signal using a ground-based CMB experiment, POLARBEAR, located at the Atacama desert in Chile and observing at 150 GHz. We observe horizontally-polarized temporal increases of low-frequency fluctuations (polarized bursts, hereafter) of $lesssim$0.1 K when clouds appear in a webcam monitoring the telescope and the sky. The hypothesis of no correlation between polarized bursts and clouds is rejected with $>$24$sigma$ statistical significance using three years of data. We consider many other possibilities including instrumental and environmental effects, and find no other reasons other than clouds that can explain the data better. We also discuss the impact of the cloud polarization on future ground-based CMB polarization experiments.



قيم البحث

اقرأ أيضاً

125 - Y. Inoue , P. Ade , Y. Akiba 2016
POLARBEAR-2 (PB-2) is a cosmic microwave background (CMB) polarization experiment that will be located in the Atacama highland in Chile at an altitude of 5200 m. Its science goals are to measure the CMB polarization signals originating from both prim ordial gravitational waves and weak lensing. PB-2 is designed to measure the tensor to scalar ratio, r, with precision {sigma}(r) < 0.01, and the sum of neutrino masses, {Sigma}m{ u}, with {sigma}({Sigma}m{ u}) < 90 meV. To achieve these goals, PB-2 will employ 7588 transition-edge sensor bolometers at 95 GHz and 150 GHz, which will be operated at the base temperature of 250 mK. Science observations will begin in 2017.
We describe the Cosmic Microwave Background (CMB) polarization experiment called Polarbear. This experiment will use the dedicated Huan Tran Telescope equipped with a powerful 1,200-bolometer array receiver to map the CMB polarization with unpreceden ted accuracy. We summarize the experiment, its goals, and current status.
GroundBIRD is a ground-based experiment for the precise observation of the polarization of the cosmic microwave background (CMB). To achieve high sensitivity at large angular scale, we adopt three features in this experiment: fast rotation scanning, microwave kinetic inductance detector (MKID) and cold optics. The rotation scanning strategy has the advantage to suppress $1/f$ noise. It also provides a large sky coverage of 40%, which corresponds to the large angular scales of $l sim 6$. This allows us to constrain the tensor-to-scalar ratio by using low $l$ B-mode spectrum. The focal plane consists of 7 MKID arrays for two target frequencies, 145 GHz and 220 GHz band. There are 161 pixels in total, of which 138 are for 144 GHz and 23 are for 220 GHz. This array is currently under development and the prototype will soon be evaluated in telescope. The GroundBIRD telescope will observe the CMB at the Teide observatory. The telescope was moved from Japan to Tenerife and is now under test. We present the status and plan of the GroundBIRD experiment.
226 - K. Arnold 2012
The Polarbear Cosmic Microwave Background (CMB) polarization experiment is currently observing from the Atacama Desert in Northern Chile. It will characterize the expected B-mode polarization due to gravitational lensing of the CMB, and search for th e possible B-mode signature of inflationary gravitational waves. Its 250 mK focal plane detector array consists of 1,274 polarization-sensitive antenna-coupled bolometers, each with an associated lithographed band-defining filter. Each detectors planar antenna structure is coupled to the telescopes optical system through a contacting dielectric lenslet, an architecture unique in current CMB experiments. We present the initial characterization of this focal plane.
We describe the development of an ambient-temperature continuously-rotating half-wave plate (HWP) for study of the Cosmic Microwave Background (CMB) polarization by the POLARBEAR-2 (PB2) experiment. Rapid polarization modulation suppresses 1/f noise due to unpolarized atmospheric turbulence and improves sensitivity to degree-angular-scale CMB fluctuations where the inflationary gravitational wave signal is thought to exist. A HWP modulator rotates the input polarization signal and therefore allows a single polarimeter to measure both linear polarization states, eliminating systematic errors associated with differencing of orthogonal detectors. PB2 projects a 365-mm-diameter focal plane of 7,588 dichroic, 95/150 GHz transition-edge-sensor bolometers onto a 4-degree field of view that scans the sky at $sim$ 1 degree per second. We find that a 500-mm-diameter ambient-temperature sapphire achromatic HWP rotating at 2 Hz is a suitable polarization modulator for PB2. We present the design considerations for the PB2 HWP, the construction of the HWP optical stack and rotation mechanism, and the performance of the fully-assembled HWP instrument. We conclude with a discussion of HWP polarization modulation for future Simons Array receivers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا