ترغب بنشر مسار تعليمي؟ اضغط هنا

Avoiding progenitor bias: The structural and mass evolution of Brightest Group and Cluster Galaxies in Hierarchical models since z~1

99   0   0.0 ( 0 )
 نشر من قبل Francesco Shankar Dr.
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Francesco Shankar




اسأل ChatGPT حول البحث

The mass and structural evolution of massive galaxies is one of the hottest topics in galaxy formation. This is because it may reveal invaluable insights into the still debated evolutionary processes governing the growth and assembly of spheroids. However, direct comparison between models and observations is usually prevented by the so-called progenitor bias, i.e., new galaxies entering the observational selection at later epochs, thus eluding a precise study of how pre-existing galaxies actually evolve in size. To limit this effect, we here gather data on high-redshift brightest group and cluster galaxies, evolve their (mean) host halo masses down to z=0 along their main progenitors, and assign as their descendants local SDSS central galaxies matched in host halo mass. At face value, the comparison between high redshift and local data suggests a noticeable increase in stellar mass of a factor of >2 since z~1, and of >2.5 in mean effective radius. We then compare the inferred stellar mass and size growth with those predicted by hierarchical models for central galaxies, selected at high redshifts to closely match the halo and stellar mass bins as in the data. Only hierarchical models characterized by very limited satellite stellar stripping and parabolic orbits are capable of broadly reproducing the stellar mass and size increase of a factor ~2-4 observed in cluster galaxies since z ~1. The predicted, average (major) merger rate since z~1 is in good agreement with the latest observational estimates.



قيم البحث

اقرأ أيضاً

In this paper, we use stacking analysis to trace the mass-growth, colour evolution, and structural evolution of present-day massive galaxies ($log(M_{*}/M_{odot})=11.5$) out to $z=5$. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by $approx1.5~mathrm{dex}$ since $z=5$. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by $zsim2$, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build up at $r<3~mathrm{kpc}$ beyond $z>4$ probing an era of significant mass assembly in the interiors of present day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with $z$ at $r<3~mathrm{kpc}$. We identify $zsim1.5$ as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in-situ star formation in disks to a period of efficient growth in $r_{e}$ consistent with the minor merger scenario.
528 - I.M. Whiley 2008
[Abridged] We present K-band data for the brightest cluster galaxies (BCGs) from the ESO Distant Cluster Survey. These data are combined with photometry from Aragon-Salamanca et al. (1998) and a low-redshift comparison sample from von der Linden et a l. (2007). The K-band Hubble diagram for BCGs exhibits very low scatter (~0.35mag) since z=1. The colour and $K$-band luminosity evolution of the BCGs are in good agreement with passively-evolving stellar populations formed at z>2. We do not detect any significant change in the stellar mass of the BCG since z~1. These results do not seem to depend on the velocity dispersion of the parent cluster. There is a correlation between the 1D velocity dispersion of the clusters and the K-band luminosity of the BCGs (after correcting for passive evolution). The clusters with large velocity dispersions tend to have brighter BCGs, i.e., BCGs with larger stellar masses. This dependency, although significant, is relatively weak: the stellar mass of the BCGs changes only by ~70% over a two-order-of-magnitude range in cluster mass. This dependency doesnt change significantly with redshift. The models of De Lucia & Blaizot (2007) predict colours which are in reasonable agreement with the observations because the growth in stellar mass is dominated by the accretion of old stars. However, the stellar mass in the model BCGs grows by a factor of 3-4 since z=1, a growth rate which seems to be ruled out by the observations. The models predict a dependency between the BCGs stellar mass and the velocity dispersion of the parent cluster in the same sense as the data, but the dependency is significantly stronger than observed. However, one major difficulty in this comparison is that we have measured fixed metric aperture magnitudes while the models compute total luminosities.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allo ws us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL co ntains much information about the evolution of its host cluster and the interactions between the galaxies within. However due its low surface brightness it is notoriously difficult to study. We present the first detection and measurement of the flux contained in the ICL at z~1. We find that the fraction of the total cluster light contained in the ICL may have increased by factors of 2-4 since z~1, in contrast to recent findings for the lack of mass and scale size evolution found for brightest cluster galaxies. Our results suggest that late time buildup in cluster cores may occur more through stripping than merging and we discuss the implications of our results for hierarchical simulations.
We examine the role of environment on the in situ star formation (SF) hosted by the progenitors of the most massive galaxies in the present-day universe, the brightest cluster galaxies (BCGs), from $z sim 3$ to present in the COSMOS field. Progenitor s are selected from the COSMOS field using a stellar mass cut motivated by the evolving cumulative comoving number density of progenitors within the Illustris simulation, as well as the Millennium-II simulation and a constant comoving number density method for comparison. We characterize each progenitor using far-ultraviolet--far-infrared observations taken from the COSMOS field and fitting stellar, dust, and active galactic nucleus components to their spectral energy distributions. Additionally, we compare the SF rates of our progenitor sample to the local density maps of the COSMOS field to identify the effects of environment. We find that BCG progenitors evolve in three stages, starting with an in situ SF dominated phase ($z > 2.25$). This is followed by a phase until $z sim 1.25$ where mass growth is driven by in situ SF and stellar mass deposited by mergers (both gas rich and poor) on the same order of magnitude independent of local environment. Finally, at low redshift dry mergers are the dominant stellar mass generation process. We also identify this final transition period as the time when progenitors quench, exhibiting quiescent NUVemph{rJ} colors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا