ترغب بنشر مسار تعليمي؟ اضغط هنا

Evolution in cluster cores since z~1

137   0   0.0 ( 0 )
 نشر من قبل Claire Burke
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A large fraction of the stellar mass in galaxy clusters is thought to be contained in the diffuse low surface brightness intracluster light (ICL). Being bound to the gravitational potential of the cluster rather than any individual galaxy, the ICL contains much information about the evolution of its host cluster and the interactions between the galaxies within. However due its low surface brightness it is notoriously difficult to study. We present the first detection and measurement of the flux contained in the ICL at z~1. We find that the fraction of the total cluster light contained in the ICL may have increased by factors of 2-4 since z~1, in contrast to recent findings for the lack of mass and scale size evolution found for brightest cluster galaxies. Our results suggest that late time buildup in cluster cores may occur more through stripping than merging and we discuss the implications of our results for hierarchical simulations.



قيم البحث

اقرأ أيضاً

We present results of a statistical study of the cosmic evolution of the mass dependent major-merger rate since z=1. A stellar mass limited sample of close major-merger pairs (the CPAIR sample) was selected from the archive of the COSMOS survey. Pair fractions at different redshifts derived using the CPAIR sample and a local K-band selected pair sample show no significant variations with stellar mass. The pair fraction exhibits moderately strong cosmic evolution, with the best-fitting evolutionary index m=2.2+-0.2. The best-fitting function for the merger rate implies that galaxies with stellar mass between 1E+10 -- 3E+11 M_sun have undergone 0.5 -- 1.5 major-mergers since z=1. Our results show that, for massive galaxies at z<1, major mergers involving star forming galaxies (i.e. wet and mixed mergers) can account for the formation of both ellipticals and red quiescent galaxies (RQGs). On the other hand, major mergers cannot be responsible for the formation of most low mass ellipticals and RQGs. Our quantitative estimates indicate that major mergers have significant impact on the stellar mass assembly of the most massive galaxies, but for less massive galaxies the stellar mass assembly is dominated by the star formation. Comparison with the mass dependent (U)LIRG rates suggests that the frequency of major-merger events is comparable to or higher than that of (U)LIRGs.
137 - P. Arnalte-Mur 2013
We study the clustering of galaxies as function of luminosity and redshift in the range $0.35 < z < 1.25$ using data from the Advanced Large Homogeneous Area Medium Band Redshift Astronomical (ALHAMBRA) survey. The ALHAMBRA data used in this work cov er $2.38 mathrm{deg}^2$ in 7 independent fields, after applying a detailed angular selection mask, with accurate photometric redshifts, $sigma_z lesssim 0.014 (1+z)$, down to $I_{rm AB} < 24$. Given the depth of the survey, we select samples in $B$-band luminosity down to $L^{rm th} simeq 0.16 L^{*}$ at $z = 0.9$. We measure the real-space clustering using the projected correlation function, accounting for photometric redshifts uncertainties. We infer the galaxy bias, and study its evolution with luminosity. We study the effect of sample variance, and confirm earlier results that the COSMOS and ELAIS-N1 fields are dominated by the presence of large structures. For the intermediate and bright samples, $L^{rm med} gtrsim 0.6L^{*}$, we obtain a strong dependence of bias on luminosity, in agreement with previous results at similar redshift. We are able to extend this study to fainter luminosities, where we obtain an almost flat relation, similar to that observed at low redshift. Regarding the evolution of bias with redshift, our results suggest that the different galaxy populations studied reside in haloes covering a range in mass between $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 11.5$ for samples with $L^{rm med} simeq 0.3 L^{*}$ and $log_{10}[M_{rm h}/(h^{-1}mathrm{M}_{odot})] gtrsim 13.0$ for samples with $L^{rm med} simeq 2 L^{*}$, with typical occupation numbers in the range of $sim 1 - 3$ galaxies per halo.
We study the star-forming (SF) population of galaxies within a sample of 209 IR-selected galaxy clusters at 0.3$,leq,z,leq,$1.1 in the ELAIS-N1 and XMM-LSS fields, exploiting the first HSC-SSP data release. The large area and depth of these data allo ws us to analyze the dependence of the SF fraction, $f_{SF}$, on stellar mass and environment separately. Using $R/R_{200}$ to trace environment, we observe a decrease in $f_{SF}$ from the field towards the cluster core, which strongly depends on stellar mass and redshift. The data show an accelerated growth of the quiescent population within the cluster environment: the $f_{SF}$ vs. stellar mass relation of the cluster core ($R/R_{200},leq,$0.4) is always below that of the field (4$,leq,R/R_{200},<,$6). Finally, we find that environmental and mass quenching efficiencies depend on galaxy stellar mass and distance to the center of the cluster, demonstrating that the two effects are not separable in the cluster environment. We suggest that the increase of the mass quenching efficiency in the cluster core may emerge from an initial population of galaxies formed ``in situ. The dependence of the environmental quenching efficiency on stellar mass favors models in which galaxies exhaust their reservoir of gas through star formation and outflows, after new gas supply is truncated when galaxies enter the cluster.
82 - Francois Hammer 2004
Determination of the star formation rate can be done using mid-IR photometry or Balmer line luminosity after a proper correction for extinction effects. Both methods show convergent results while those based on UV or on [OII]3727 luminosities underes timate the SFR by factors ranging from 5 to 40 for starbursts and for luminous IR galaxies, respectively. Most of the evolution of the cosmic star formation density is related to the evolution of luminous compact galaxies and to luminous IR galaxies. Because they were metal deficient and were forming stars at very high rates (40 to 100 solar mass per year), it is probable that these (massive) galaxies were actively forming the bulk of their stellar/metal content at z < 1.
110 - A. Georgakakis 2011
We explore the evolution with redshift of the rest-frame colours and space densities of AGN hosts (relative to normal galaxies) to shed light on the dominant mechanism that triggers accretion onto supermassive black holes as a function of cosmic time . Data from serendipitous wide-area XMM surveys of the SDSS footprint (XMM/SDSS, Needles in the Haystack survey) are combined with Chandra deep observations in the AEGIS, GOODS-North and GOODS-South to compile uniformly selected samples of moderate luminosity X-ray AGN [L_X(2-10keV) = 1e41-1e44erg/s] at redshifts 0.1, 0.3 and 0.8. It is found that the fraction of AGN hosted by red versus blue galaxies does not change with redshift. Also, the X-ray luminosity density associated with either red or blue AGN hosts remains nearly constant since z=0.8. X-ray AGN represent a roughly fixed fraction of the space density of galaxies of given optical luminosity at all redshifts probed by our samples. In contrast the fraction of X-ray AGN among galaxies of a given stellar mass decreases with decreasing redshift. These findings suggest that the same process or combination of processes for fueling supermassive black holes are in operation in the last 5 Gyrs of cosmic time. The data are consistent with a picture in which the drop of the accretion power during that period (1dex since z=0.8) is related to the decline of the space density of available AGN hosts, as a result of the evolution of the specific star-formation rate of the overall galaxy population. Scenarios which attribute the evolution of moderate luminosity AGN since z approx 1 to changes in the suppermassive black hole accretion mode are not favored by our results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا