ﻻ يوجد ملخص باللغة العربية
In this paper, we use stacking analysis to trace the mass-growth, colour evolution, and structural evolution of present-day massive galaxies ($log(M_{*}/M_{odot})=11.5$) out to $z=5$. We utilize the exceptional depth and area of the latest UltraVISTA data release, combined with the depth and unparalleled seeing of CANDELS to gather a large, mass-selected sample of galaxies in the NIR (rest-frame optical to UV). Progenitors of present-day massive galaxies are identified via an evolving cumulative number density selection, which accounts for the effects of merging to correct for the systematic biases introduced using a fixed cumulative number density selection, and find progenitors grow in stellar mass by $approx1.5~mathrm{dex}$ since $z=5$. Using stacking, we analyze the structural parameters of the progenitors and find that most of the stellar mass content in the central regions was in place by $zsim2$, and while galaxies continue to assemble mass at all radii, the outskirts experience the largest fractional increase in stellar mass. However, we find evidence of significant stellar mass build up at $r<3~mathrm{kpc}$ beyond $z>4$ probing an era of significant mass assembly in the interiors of present day massive galaxies. We also compare mass assembly from progenitors in this study to the EAGLE simulation and find qualitatively similar assembly with $z$ at $r<3~mathrm{kpc}$. We identify $zsim1.5$ as a distinct epoch in the evolution of massive galaxies where progenitors transitioned from growing in mass and size primarily through in-situ star formation in disks to a period of efficient growth in $r_{e}$ consistent with the minor merger scenario.
The stellar populations of intermediate-redshift galaxies can shed light onto the growth of massive galaxies in the last 8 billion years. We perform deep, multi-object rest-frame optical spectroscopy with IMACS/Magellan of ~70 galaxies in the E-CDFS
We present 0.2arcsec-resolution Atacama Large Millimeter/submillimeter Array observations at 870 $mu$m in a stellar mass-selected sample of 85 massive ($M_mathrm{star}>10^{11}~M_odot$) star-forming galaxies (SFGs) at z=1.9-2.6 in the 3D-HST/CANDELS f
The mass and structural evolution of massive galaxies is one of the hottest topics in galaxy formation. This is because it may reveal invaluable insights into the still debated evolutionary processes governing the growth and assembly of spheroids. Ho
We follow the structural evolution of star forming galaxies (SFGs) like the Milky Way by selecting progenitors to z~1.3 based on the stellar mass growth inferred from the evolution of the star forming sequence. We select our sample from the 3D-HST su
We present an ALMA survey of dust continuum emission in a sample of 70 galaxies in the redshift range z=2-5 selected from the CANDELS GOODS-S field. Multi-Epoch Abundance Matching (MEAM) is used to define potential progenitors of a z = 0 galaxy of st