ﻻ يوجد ملخص باللغة العربية
We present a novel model to estimate biological effects caused by artificial radiation exposure, Whack-a-mole (WAM) model. It is important to take account of the recovery effects during the time course of the cellular reactions. The inclusion of the dose-rate dependence is essential in the risk estimation of low dose radiation, while nearly all the existing theoretical models relies on the total dose dependence only. By analyzing the experimental data of the relation between the radiation dose and the induced mutation frequency of 5 organisms, mouse, drosophila, chrysanthemum, maize and tradescantia, we found that all the data can be reproduced by WAM model. Most remarkably, a scaling function, which is derived from WAM model, consistently accounts for the observed mutation frequencies of 5 organisms. This is the first rationale to account for the dose rate dependence as well as to give a unified understanding of a general feature of organisms.
Understanding metallic behaviour is still one of the central tasks in Condensed Matter Physics. Recent developments have energized the interest in several modern concepts, such as strange metal, bad metal, and Planckian metal. However, a unified desc
We develop a kinetic reaction model for cells having irradiated DNA molecules due to ionizing radiation exposure. Our theory simultaneously accounts for the time-dependent reactions of the DNA damage, the DNA mutation, the DNA repair, and the prolife
Since their discovery in 1896, x-rays have had a profound impact on science, medicine and technology. Here we show that the x-rays from a novel tabletop source of bright coherent synchrotron radiation can be applied to phase contrast imaging of biolo
Analysis of transverse momentum distributions is a useful tool to understand the dynamics of relativistic particles produced in high energy collision. Finding a proper distribution function to approximate the spectra is a vastly developing area of re
A first principles approach to the theoretical description of the development of biological forms, from a fertilized egg to a functioning embryo, remains a central challenge to applied physics and theoretical biology. Rather than refer to principles