ﻻ يوجد ملخص باللغة العربية
Understanding metallic behaviour is still one of the central tasks in Condensed Matter Physics. Recent developments have energized the interest in several modern concepts, such as strange metal, bad metal, and Planckian metal. However, a unified description of metallic resistivity applicable to the existing diversity of materials is still missing. Herein we present an empirical analysis of a large variety of metals, from normal metals to strongly correlated metals, using the same phenomenological approach. The electrical resistivity in all the cases follows a parallel resistor formalism, which takes both T-linear and T-quadratic dependence of the scattering rates into account. The results reveal the significance of the model by showing that the different metallic classes are determined by the relative magnitude of these two components. Importantly, our analysis shows that the T-linear term arises from the Planckian dissipation limit and it is present in all considered systems. This formalism extends previous reports on strange and normal metals, facilitating the classification of materials with non-linear resistivity curves, an important step towards the experimental confirmation of the universal character of the Planckian dissipation bound.
In this work, we define a set of analytic tools to describe the dynamic response of the magnetization to small perturbations, which can be used on its own or in combination with micromagnetic simulations and does not require saturation. We present a
A summary of recent results on filamentary transport, mostly obtained in the ASDEX-Upgrade tokamak (AUG), is presented and discussed in an attempt to produce a coherent picture of SOL filamentary transport: A clear correlation is found between L-mode
A recently developed model that unifies the ballistic and diffusive transport mechanisms is applied in a theoretical study of carrier transport across potential barriers at grain boundaries in microcrystalline semiconducting materials. In the unified
We investigate the high-energy magnetic excitation spectrum of the high-$T_c$ cuprate superconductor Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ (Bi-2212) using Cu $L_3$ edge resonant inelastic x-ray scattering (RIXS). Broad, dispersive magnetic excitations ar
High temperature superconductors are strongly coupled systems which present a complicated phase diagram with many coexisting phases. This makes it difficult to understand the mechanism which generates their singular transport properties. Hydrodynamic