ﻻ يوجد ملخص باللغة العربية
Analysis of transverse momentum distributions is a useful tool to understand the dynamics of relativistic particles produced in high energy collision. Finding a proper distribution function to approximate the spectra is a vastly developing area of research in particle physics. In this work, we have provided a detailed theoretical description of the application of the unified statistical framework in high energy physics. Here, the transverse momentum spectra of pion measured by experiment at RHIC and LHC are also investigated in the framework of relativistic statistical thermodynamics using unified distribution.
Thermodynamical description of the system created during high energy collision requires a proper thermodynamical framework to study the distribution of particles. In this work, we have attempted to explain the transverse momentum spectra of charged h
Transverse momentum $p_T$ spectra of final state particles produced in high energy heavy-ion collision can be divided into two distinct regions based on the difference in the underlying particle production process. We have provided a unified formalis
In this letter, we present the NNLL-NNLO transverse momentum Higgs distribution arising from gluon fusion. In the regime $p_perpll m_H$ we include the resummation of the large logs at next to next-to leading order and then match on to the $alpha_s^2$
In order to characterize the transverse momentum spectra of positive pions measured in the ALICE experiment, two thermal approaches are utilized; one is based on degeneracy of non-perfect Bose-Einstein gas and the other imposes an {it ad-hoc} finite
We discuss the transverse momentum distribution of $Z^0$ and $W^pm$ gauge bosons at the LHC with $sqrt s=14$ TeV for pp collisions and with $sqrt s=5.5$ TeV for Pb+Pb collisions. Effects of power corrections and shadowing are also studied.