ﻻ يوجد ملخص باللغة العربية
The purpose of this paper is to introduce techniques of obtaining optimal ways to determine a d-level quantum state or distinguish such states. It entails designing constrained elementary measurements extracted from maximal abelian subsets of a unitary basis U for the operator algebra B(H) of a Hilbert space H of finite dimension d > 3 or, after choosing an orthonormal basis for H, for the *-algebra Md of complex matrices of order d > 3. Illustrations are given for the techniques. It is shown that the Schwinger basis U of unitary operators can give for d, a product of primes p and a, the ideal number d^2 of rank one projectors that have a few quantum mechanical overlaps (or, for that matter, a few angles between the corresponding unit vectors). We also give a combination of the tensor product and constrained elementary measurement techniques to deal with all d. A comparison is drawn for different forms of unitary bases for the Hilbert space and also for different Hilbert space factors of the tensor product. In the process we also study the equivalence relation on unitary bases defined by R. F. Werner [J. Phys. A: Math. Gen. 34 (2001) 7081], connect it to local operations on maximally entangled vectors bases, find an invariant for equivalence classes in terms of certain commuting systems, called fan representations, and, relate it to mutually unbiased bases and Hadamard matrices. Illustrations are given in the context of latin squares and projective representations as well.
Linear optical systems acting on photon number states produce many interesting evolutions, but cannot give all the allowed quantum operations on the input state. Using Toponogovs theorem from differential geometry, we propose an iterative method that
We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the
Quantum tomography is a critically important tool to evaluate quantum hardware, making it essential to develop optimized measurement strategies that are both accurate and efficient. We compare a variety of strategies using nearly pure test states. Th
Many quantum statistical models are most conveniently formulated in terms of non-orthonormal bases. This is the case, for example, when mixtures and superpositions of coherent states are involved. In these instances, we show that the analytical evalu
We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set