ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Smooth Boundary Forces from Constrained Geometries

232   0   0.0 ( 0 )
 نشر من قبل Tomoi Koide
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We implement the so-called Weyl-Heisenberg covariant integral quantization in the case of a classical system constrained by a bounded or semi-bounded geometry. The procedure, which is free of the ordering problem of operators, is illustrated with the basic example of the one-dimensional motion of a free particle in an interval, and yields a fuzzy boundary, a position-dependent mass (PDM), and an extra potential on the quantum level. The consistency of our quantization is discussed by analyzing the semi-classical phase space portrait of the derived quantum dynamics, which is obtained as a regularization of its original classical counterpart.



قيم البحث

اقرأ أيضاً

The purpose of this paper is to introduce techniques of obtaining optimal ways to determine a d-level quantum state or distinguish such states. It entails designing constrained elementary measurements extracted from maximal abelian subsets of a unita ry basis U for the operator algebra B(H) of a Hilbert space H of finite dimension d > 3 or, after choosing an orthonormal basis for H, for the *-algebra Md of complex matrices of order d > 3. Illustrations are given for the techniques. It is shown that the Schwinger basis U of unitary operators can give for d, a product of primes p and a, the ideal number d^2 of rank one projectors that have a few quantum mechanical overlaps (or, for that matter, a few angles between the corresponding unit vectors). We also give a combination of the tensor product and constrained elementary measurement techniques to deal with all d. A comparison is drawn for different forms of unitary bases for the Hilbert space and also for different Hilbert space factors of the tensor product. In the process we also study the equivalence relation on unitary bases defined by R. F. Werner [J. Phys. A: Math. Gen. 34 (2001) 7081], connect it to local operations on maximally entangled vectors bases, find an invariant for equivalence classes in terms of certain commuting systems, called fan representations, and, relate it to mutually unbiased bases and Hadamard matrices. Illustrations are given in the context of latin squares and projective representations as well.
We investigate the energy-constrained (EC) diamond norm distance between unitary channels acting on possibly infinite-dimensional quantum systems, and establish a number of results. Firstly, we prove that optimal EC discrimination between two unitary channels does not require the use of any entanglement. Extending a result by Acin, we also show that a finite number of parallel queries suffices to achieve zero error discrimination even in this EC setting. Secondly, we employ EC diamond norms to study a novel type of quantum speed limits, which apply to pairs of quantum dynamical semigroups. We expect these results to be relevant for benchmarking internal dynamics of quantum devices. Thirdly, we establish a version of the Solovay--Kitaev theorem that applies to the group of Gaussian unitaries over a finite number of modes, with the approximation error being measured with respect to the EC diamond norm relative to the photon number Hamiltonian.
We consider the evolution of an arbitrary quantum dynamical semigroup of a finite-dimensional quantum system under frequent kicks, where each kick is a generic quantum operation. We develop a generalization of the Baker-Campbell-Hausdorff formula all owing to reformulate such pulsed dynamics as a continuous one. This reveals an adiabatic evolution. We obtain a general type of quantum Zeno dynamics, which unifies all known manifestations in the literature as well as describing new types.
The essence of the path integral method in quantum physics can be expressed in terms of two relations between unitary propagators, describing perturbations of the underlying system. They inherit the causal structure of the theory and its invariance p roperties under variations of the action. These relations determine a dynamical algebra of bounded operators which encodes all properties of the corresponding quantum theory. This novel approach is applied to non-relativistic particles, where quantum mechanics emerges from it. The method works also in interacting quantum field theories and sheds new light on the foundations of quantum physics.
Proving that the parent Hamiltonian of a Projected Entangled Pair State (PEPS) is gapped remains an important open problem. We take a step forward in solving this problem by showing two results: first, we identify an approximate factorization conditi on on the boundary state of rectangular subregions that is sufficient to prove that the parent Hamiltonian of the bulk 2D PEPS has a constant gap in the thermodynamic limit; second, we then show that Gibbs state of a local, finite-range Hamiltonian satisfy such condition. The proof applies to the case of injective and MPO-injective PEPS, employs the martingale method of nearly commuting projectors, and exploits a result of Araki on the robustness of one dimensional Gibbs states. Our result provides one of the first rigorous connections between boundary theories and dynamical properties in an interacting many body system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا