ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum Tomography under Prior Information

108   0   0.0 ( 0 )
 نشر من قبل Teiko Heinosaari
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a detailed analysis of the question: how many measurement settings or outcomes are needed in order to identify a quantum system which is constrained by prior information? We show that if the prior information restricts the system to a set of lower dimensionality, then topological obstructions can increase the required number of outcomes by a factor of two over the number of real parameters needed to characterize the system. Conversely, we show that almost every measurement becomes informationally complete with respect to the constrained set if the number of outcomes exceeds twice the Minkowski dimension of the set. We apply the obtained results to determine the minimal number of outcomes of measurements which are informationally complete with respect to states with rank constraints. In particular, we show that 4d-4 measurement outcomes (POVM elements) is enough in order to identify all pure states in a d-dimensional Hilbert space, and that the minimal number is at most 2 log_2(d) smaller than this upper bound.



قيم البحث

اقرأ أيضاً

406 - Wei Zhong , Zhe Sun , Jian Ma 2012
The dynamics of two variants of quantum Fisher information under decoherence are investigated from a geometrical point of view. We first derive the explicit formulas of these two quantities for a single qubit in terms of the Bloch vector. Moreover, w e obtain analytical results for them under three different decoherence channels, which are expressed as affine transformation matrices. Using the hierarchy equation method, we numerically study the dynamics of both the two information in a dissipative model and compare the numerical results with the analytical ones obtained by applying the rotating-wave approximation. We further express the two information quantities in terms of the Bloch vector for a qudit, by expanding the density matrix and Hermitian operators in a common set of generators of the Lie algebra $mathfrak{su}(d)$. By calculating the dynamical quantum Fisher information, we find that the collisional dephasing significantly diminishes the precision of phase parameter with the Ramsey interferometry.
The Quantum Fisher Information (QFI) plays a crucial role in quantum information theory and in many practical applications such as quantum metrology. However, computing the QFI is generally a computationally demanding task. In this work we analyze a lower bound on the QFI which we call the sub-Quantum Fisher Information (sub-QFI). The bound can be efficiently estimated on a quantum computer for an $n$-qubit state using $2n$ qubits. The sub-QFI is based on the super-fidelity, an upper bound on Uhlmanns fidelity. We analyze the sub-QFI in the context of unitary families, where we derive several crucial properties including its geometrical interpretation. In particular, we prove that the QFI and the sub-QFI are maximized for the same optimal state, which implies that the sub-QFI is faithful to the QFI in the sense that both quantities share the same global extrema. Based on this faithfulness, the sub-QFI acts as an efficiently computable surrogate for the QFI for quantum sensing and quantum metrology applications. Finally, we provide additional meaning to the sub-QFI as a measure of coherence, asymmetry, and purity loss.
102 - Pierre Six , Pierre Rouchon 2016
Bayesian estimation of a mixed quantum state can be approximated via maximum likelihood (MaxLike) estimation when the likelihood function is sharp around its maximum. Such approximations rely on asymptotic expansions of multi-dimensional Laplace inte grals. When this maximum is on the boundary of the integration domain, as it is the case when the MaxLike quantum state is not full rank, such expansions are not standard. We provide here such expansions, even when this maximum does not belong to the smooth part of the boundary, as it is the case when the rank deficiency exceeds two. These expansions provide, aside the MaxLike estimate of the quantum state, confidence intervals for any observable. They confirm the formula proposed and used without precise mathematical justifications by the authors in an article recently published in Physical Review A.
We develop a connection between tripartite information $I_3$, secret sharing protocols and multi-unitaries. This leads to explicit ((2,3)) threshold schemes in arbitrary dimension minimizing tripartite information $I_3$. As an application we show tha t Page scrambling unitaries simultaneously work for all secrets shared by Alice. Using the $I_3$-Ansatz for imperfect sharing schemes we discover examples of VIP sharing schemes.
154 - Yunlong Xiao , Kun Fang , 2019
The uncertainty principle bounds the uncertainties about incompatible measurements, clearly setting quantum theory apart from the classical world. Its mathematical formulation via uncertainty relations, plays an irreplaceable role in quantum technolo gies. However, neither the uncertainty principle nor uncertainty relations can fully describe the complementarity between quantum measurements. As an attempt to advance the efforts of complementarity in quantum theories, we formally propose a complementary information principle, significantly extending the one introduced by Heisenberg. First, we build a framework of black box testing consisting of pre- and post-testing with two incompatible measurements, introducing a rigorous mathematical expression of complementarity with definite information causality. Second, we provide majorization lower and upper bounds for the complementary information by utilizing the tool of semidefinite programming. In particular, we prove that our bounds are optimal under majorization due to the completeness of the majorization lattice. Finally, as applications to our framework, we present a general method to outer-approximating all uncertainty regions and also establish fundamental limits for all qualified joint uncertainties.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا