ﻻ يوجد ملخص باللغة العربية
We study the inverse Compton scattering of the CMB photons off nonthermal high-energy electrons. In the previous study, assuming the power-law distribution for electrons, we derived the analytic expression for the spectral intensity function $I(omega)$ in the Thomson approximation, which was applicable up to the photon energies of $omega <$ O(GeV). In the present paper, we extend the previous work to higher photon energies of $omega >$ O(GeV) by taking into account the terms dropped in the Thomson approximation, i.e., the Klein-Nishina formula. The analytic expression for $I(omega)$ is derived with the Klein-Nishina formula. It is shown that $I(omega)$ has a knee structure at $omega =$ O(PeV). The knee, if exists, should be accessible with gamma-ray observatories such as Fermi-LAT. We propose simple analytical formulae for $I(omega)$ which are applicable to wide photon energies from Thomson region to extreme Klein-Nishina region.
Based upon the rate equations for the photon distribution function obtained in the previous paper, we study the inverse Compton scattering process for high-energy nonthermal electrons. Assuming the power-law electron distribution, we find a scaling l
We study the inverse Compton scattering of the CMB photons off high-energy nonthermal electrons. We extend the formalism obtained by the previous paper to the case where the electrons have non-zero bulk motions with respect to the CMB frame. Assuming
Repeated Compton scattering of photons with thermal electrons is one of the fundamental processes at work in many astrophysical plasma. Solving the exact evolution equations is hard and one common simplification is based on Fokker-Planck (FP) approxi
The Fermi-LAT survey provides a large sample of blazars selected on the strength of their inverse Compton emission. We cross-correlate the first Fermi-LAT catalogue with the CRATES radio catalogue and use this sample to investigate whether blazar gam
The recent detection of blazar 3C279 by MAGIC has confirmed previous indications by H.E.S.S. that the Universe is more transparent to very-high-energy gamma rays than previously thought. We show that this fact can be reconciled with standard blazar e