ﻻ يوجد ملخص باللغة العربية
Since the very early days of quantum theory there have been numerous attempts to interpret quantum mechanics as a statistical theory. This is equivalent to describing quantum states and ensembles together with their dynamics entirely in terms of phase-space distributions. Finite dimensional systems have historically been an issue. In recent works [Phys. Rev. Lett. 117, 180401 and Phys. Rev. A 96, 022117] we presented a framework for representing any quantum state as a complete continuous Wigner function. Here we extend this work to its partner function -- the Weyl function. In doing so we complete the phase-space formulation of quantum mechanics -- extending work by Wigner, Weyl, Moyal, and others to any quantum system. This work is structured in three parts. Firstly we provide a brief modernized discussion of the general framework of phase-space quantum mechanics. We extend previous work and show how this leads to a framework that can describe any system in phase space -- putting it for the first time on a truly equal footing to Schrodingers and Heisenbergs formulation of quantum mechanics. Importantly, we do this in a way that respects the unifying principles of parity and displacement in a natural broadening of previously developed phase space concepts and methods. Secondly we consider how this framework is realized for different quantum systems; in particular we consider the proper construction of Weyl functions for some example finite dimensional systems. Finally we relate the Wigner and Weyl distributions to statistical properties of any quantum system or set of systems.
The basic notions of statistical mechanics (microstates, multiplicities) are quite simple, but understanding how the second law arises from these ideas requires working with cumbersomely large numbers. To avoid getting bogged down in mathematics, one
The foundations of quantum mechanics have been plagued by controversy throughout the 85 year history of the field. It is argued that lack of clarity in the formulation of basic philosophical questions leads to unnecessary obscurity and controversy an
A non-relativistic quantum mechanical theory is proposed that describes the universe as a continuum of worlds whose mutual interference gives rise to quantum phenomena. A logical framework is introduced to properly deal with propositions about object
Causality is a seminal concept in science: Any research discipline, from sociology and medicine to physics and chemistry, aims at understanding the causes that could explain the correlations observed among some measured variables. While several metho
In this paper I propose a new way for counting the microstates of a system out of equilibrium. As, according to quantum mechanics, things happen as if a given particle can be found in more than one state at once, I extend this concept to propose the