ﻻ يوجد ملخص باللغة العربية
Electron beam induced current (EBIC) is a powerful technique which measures the charge collection efficiency of photovoltaics with sub-micron spatial resolution. The exciting electron beam results in a high generation rate density of electron-hole pairs, which may drive the system into nonlinear regimes. An analytic model is presented which describes the EBIC response when the {it total} electron-hole pair generation rate exceeds the rate at which carriers are extracted by the photovoltaic cell, and charge accumulation and screening occur. The model provides a simple estimate of the onset of the high injection regime in terms of the material resistivity and thickness, and provides a straightforward way to predict the EBIC lineshape in the high injection regime. The model is verified by comparing its predictions to numerical simulations in 1 and 2 dimensions. Features of the experimental data, such as the magnitude and position of maximum collection efficiency versus electron beam current, are consistent with the 3 dimensional model.
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Ideally, an EBIC measurement reflects the spatially resolved quantum efficiency of the
We theoretically analyze the contrast observed at the outcrop of a threading dislocation at the GaN(0001) surface in cathodoluminescence and electron-beam induced current maps. We consider exciton diffusion and recombination including finite recombin
Electron beam induced current (EBIC) is a powerful characterization technique which offers the high spatial resolution needed to study polycrystalline solar cells. Current models of EBIC assume that excitations in the $p$-$n$ junction depletion regio
The separation of hot carriers in semiconductors is of interest for applications such as thermovoltaic photodetection and third-generation photovoltaics. Semiconductor nanowires offer several potential advantages for effective hot-carrier separation
We present Fermis golden rule calculations of the optical carrier injection and the coherent control of current injection in graphene nanoribbons with zigzag geometry, using an envelope function approach. This system possesses strongly localized stat