ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetism in a family of $S = 1$ square lattice antiferromagnets Ni$X_2$(pyz)$_2$ ($X = $ Cl, Br, I, NCS; pyz = pyrazine)

242   0   0.0 ( 0 )
 نشر من قبل Junjie Liu
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The crystal structures of Ni$X_2$(pyz)$_2$ ($X$ = Cl (textbf{1}), Br (textbf{2}), I (textbf{3}) and NCS (textbf{4})) were determined at 298~K by synchrotron X-ray powder diffraction. All four compounds consist of two-dimensional (2D) square arrays self-assembled from octahedral NiN$_4$$X_2$ units that are bridged by pyz ligands. The 2D layered motifs displayed by textbf{1}-textbf{4} are relevant to bifluoride-bridged [Ni(HF$_2$)(pyz)$_2$]$Z$F$_6$ ($Z$ = P, Sb) which also possess the same 2D layers. In contrast, terminal $X$ ligands occupy axial positions in textbf{1}-textbf{4} and cause a staggering of adjacent layers. Long-range antiferromagnetic order occurs below 1.5 (Cl), 1.9 (Br and NCS) and 2.5~K (I) as determined by heat capacity and muon-spin relaxation. The single-ion anisotropy and $g$ factor of textbf{2}, textbf{3} and textbf{4} are measured by electron spin resonance where no zero--field splitting was found. The magnetism of textbf{1}-textbf{4} crosses a spectrum from quasi-two-dimensional to three-dimensional antiferromagnetism. An excellent agreement was found between the pulsed-field magnetization, magnetic susceptibility and $T_textrm{N}$ of textbf{2} and textbf{4}. Magnetization curves for textbf{2} and textbf{4} calculated by quantum Monte Carlo simulation also show excellent agreement with the pulsed-field data. textbf{3} is characterized as a three-dimensional antiferromagnet with the interlayer interaction ($J_perp$) slightly stronger than the interaction within the two-dimensional [Ni(pyz)$_2$]$^{2+}$ square planes ($J_textrm{pyz}$).



قيم البحث

اقرأ أيضاً

We have performed elastic and inelastic neutron experiments on single crystal samples of the coordination polymer compound CuF2(H2O)2(pyz) (pyz=pyrazine) to study the magnetic structure and excitations. The elastic neutron diffraction measurements in dicate a collinear antiferromagnetic structure with moments oriented along the [0.7 0 1] real-space direction and an ordered moment of 0.60 +/- 0.03 muB/Cu. This value is significantly smaller than the single ion magnetic moment, reflecting the presence of strong quantum fluctuations. The spin wave dispersion from magnetic zone center to the zone boundary points (0.5 1.5 0) and (0.5 0 1.5) can be described by a two dimensional Heisenberg model with a nearest neighbor magnetic exchange constant J2d = 0.934 +/-0.0025 meV. The inter-layer interaction Jperp in this compound is less than 1.5% of J2d. The spin excitation energy at the (0.5 0.5 0.5) zone boundary point is reduced when compared to the (0.5 1 0.5) zone boundary point by ~10.3 +/- 1.4 %. This zone boundary dispersion is consistent with quantum Monte Carlo and series expansion calculations which include corrections for quantum fluctuations to linear spin wave theory.
71 - X. Zhao , Z. Y. Zhao , L. M. Chen 2019
Magnetism of the $S$ = 1 Heisenberg antiferromagnets on the spatially anisotropic square lattice has been scarcely explored. Here we report a study of the magnetism, specific heat, and thermal conductivity on Ni[SC(NH$_2$)$_2$]$_6$Br$_2$ (DHN) single crystals. Ni$^{2+}$ ions feature an $S$ = 1 rectangular lattice in the $bc$ plane, which can be viewed as an unfrustrated spatially anisotropic square lattice. A long-range antiferromagnetic order is developed at $T rm_N =$ 2.23 K. Below $Trm_N$, an upturn is observed in the $b$-axis magnetic susceptibility and the resultant minimum might be an indication for the $XY$ anisotropy in the ordered state. A gapped spin-wave dispersion is confirmed from the temperature dependence of the magnetic specific heat. Anisotropic temperature-field phase diagrams are mapped out and possible magnetic structures are proposed.
We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems ${CuTeX}$ (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors ${bf{k}_{Cl}}approx[0.150,0.422 ,half]$, ${bf{k}_{Br}}approx[0.158,0.354,half]$ sets in below $T_{N}$=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu${}^{2+}$ tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)$mu_B$/Cu${}^{2+}$ at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)$mu_B$/Cu${}^{2+}$ at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found.
Inelastic neutron scattering is used to investigate the temperature dependence of spin correlations in the 3-dimensional XY antiferromagnet Ni(Cl$_{1-x}$Br$_x$)$_2$$cdot$4SC(NH$_2$)$_2$, $ x = 0.14(1)$, tuned close to the chemical-composition-induced soft-mode transition. The local dynamic structure factor shows $hbaromega/T$ scaling behavior characteristic of a quantum critical point. The deviation of the measured critical exponent from spin wave theoretical expectations are attributed to disorder. Another effect of disorder is local excitations above the magnon band. Their energy, structure factor and temperature dependence are well explained by simple strong-bond dimers associated with Br-impurity sites.
Recently, we employed electronic polarization-resolved Raman spectroscopy to reveal the strongly correlated excitonic insulator (EI) nature of Ta2NiSe5, Volkov et al. [arXiv:2007.07344], and also showed that for Ta$_2$Ni(Se$_{1-x}$S$_x$)$_5$ alloys t he critical excitonic fluctuations diminish with sulfur concentration x exposing a cooperating lattice instability that takes over for large x, Volkov et al. [arXiv:2104.07032]. Here we focus on the lattice dynamics of this EI family. We identify all Raman-active optical phonons of fully symmetric and ac-quadrupole-like symmetries and study their evolution with temperature and sulfur concentration. We demonstrate the change of selection rules at temperatures below the orthorhombic-to-monoclinic transition at Tc(x) that is related to the EI phase. We find that Tc(x) decrease monotonically from 328 K for Ta2NiSe5 to 120 K for Ta2NiS5 and that the magnitude of lattice distortion also decreases with the sulfur concentration x. For x < 0.7, the two lowest-frequency B2g phonon modes show strongly asymmetric lineshapes at high temperatures due to Fano interference with the broad excitonic continuum present in a semimetallic state. Within the framework of extended Fano model, we develop a quantitative description of the interacting exciton-phonon excitation lineshape, enabling us to derive the intrinsic phonon parameters and determine the exciton-phonon interaction strength, that affects the transition temperature Tc(x). We also observe signatures of the acoustic mode scattered assisted by the structural domain walls formed below Tc. Based on our results, we additionally present a consistent interpretation of the origin of oscillations observed in time-resolved pump-probe experiments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا