ﻻ يوجد ملخص باللغة العربية
We present the results of the first neutron powder and single crystal diffraction studies of the coupled spin tetrahedra systems ${CuTeX}$ (X=Cl, Br). Incommensurate antiferromagnetic order with the propagation vectors ${bf{k}_{Cl}}approx[0.150,0.422,half]$, ${bf{k}_{Br}}approx[0.158,0.354,half]$ sets in below $T_{N}$=18 K for X=Cl and 11 K for X=Br. No simple collinear antiferromagnetic or ferromagnetic arrangements of moments within Cu${}^{2+}$ tetrahedra fit these observations. Fitting the diffraction data to more complex but physically reasonable models with multiple helices leads to a moment of 0.67(1)$mu_B$/Cu${}^{2+}$ at 1.5 K for the Cl-compound. The reason for such a complex ground state may be geometrical frustration of the spins due to the intra- and inter-tetrahedral couplings having similar strengths. The magnetic moment in the Br- compound, calculated assuming it has the same magnetic structure as the Cl compound, is only 0.51(5)$mu_B$/Cu${}^{2+}$ at 1.5 K. In neither compound has any evidence for a structural transition accompanying the magnetic ordering been found.
Polarized and unpolarized neutron diffraction studies have been carried out on single crystals of the coupled spin tetrahedra systems Cu2Te2O5X2 (X=Cl, Br). A model of the magnetic structure associated with the propagation vectors kCl ~ -0.150,0.422,
Neutron diffraction measurements on a single crystal of CeGe1.76 reveal a complex series of magnetic transitions at low temperature. At T_N = 7 K, there is a transition from a paramagnetic state at higher temperature to an incommensurate magnetic str
Element-specific x-ray resonant magnetic scattering investigations were performed to determine the magnetic structure of Eu in EuRh2As2. In the temperature range from 46 K down to 6 K, an incommensurate antiferromagnetic (ICM)structure with a tempera
The magnetic ordering of the hexagonal multiferroic compound YbMnO$_3$ has been studied between 100 K and 1.5 K by combining neutron powder diffraction, $^{170}$Yb Mossbauer spectroscopy and magnetization measurements. The Yb moments of the two cryst
Neutron diffraction on a triple-axis spectrometer and a small-angle neutron scattering instrument is used to study the magnetic phase transition in tetragonal Ba$_2$CuGe$_2$O$_7$ at zero magnetic field. In addition to the incommensurate cycloidal ant