ﻻ يوجد ملخص باللغة العربية
In the first part of this work, we consider second order supersymmetric differential operators in the semiclassical limit, including the Kramers-Fokker-Planck operator, such that the exponent of the associated Maxwellian $phi$ is a Morse function with two local minima and one saddle point. Under suitable additional assumptions of dynamical nature, we establish the long time convergence to the equilibrium for the associated heat semigroup, with the rate given by the first non-vanishing, exponentially small, eigenvalue. In the second part of the paper, we consider the case when the function $phi$ has precisely one local minimum and one saddle point. We also discuss further examples of supersymmetric operators, including the Witten Laplacian and the infinitesimal generator for the time evolution of a chain of classical anharmonic oscillators.
We consider the heat equation associated with a class of hypoelliptic operators of Kolmogorov-Fokker-Planck type in dimension two. We explicitly compute the first meaningful coefficient of the small time asymptotic expansion of the heat kernel on the
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equatio
We consider a class of Fokker--Planck equations with linear diffusion and superlinear drift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical m
This article addresses the local boundedness and Holder continuity of weak solutions to kinetic Fokker-Planck equations with general transport operators and rough coefficients. These results are due to the mixing effect of diffusion and transport. Al
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasser