ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunnel effect for Kramers-Fokker-Planck type operators: return to equilibrium and applications

246   0   0.0 ( 0 )
 نشر من قبل Frederic Herau
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Frederic Herau




اسأل ChatGPT حول البحث

In the first part of this work, we consider second order supersymmetric differential operators in the semiclassical limit, including the Kramers-Fokker-Planck operator, such that the exponent of the associated Maxwellian $phi$ is a Morse function with two local minima and one saddle point. Under suitable additional assumptions of dynamical nature, we establish the long time convergence to the equilibrium for the associated heat semigroup, with the rate given by the first non-vanishing, exponentially small, eigenvalue. In the second part of the paper, we consider the case when the function $phi$ has precisely one local minimum and one saddle point. We also discuss further examples of supersymmetric operators, including the Witten Laplacian and the infinitesimal generator for the time evolution of a chain of classical anharmonic oscillators.



قيم البحث

اقرأ أيضاً

We consider the heat equation associated with a class of hypoelliptic operators of Kolmogorov-Fokker-Planck type in dimension two. We explicitly compute the first meaningful coefficient of the small time asymptotic expansion of the heat kernel on the diagonal, and we interpret it in terms of curvature-like invariants of the optimal control problem associated with the diffusion. This gives a first example of geometric interpretation of the small-time heat kernel asymptotics of non-homogeneous Hormander operators which are not associated with a sub-Riemannian structure, i.e., whose second-order part does not satisfy the Hormander condition.
143 - Rui Che , Wen Huang , Yao Li 2014
In recent work, Chow, Huang, Li and Zhou introduced the study of Fokker-Planck equations for a free energy function defined on a finite graph. When $Nge 2$ is the number of vertices of the graph, they show that the corresponding Fokker-Planck equatio n is a system of $N$ nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. The different choices for inner products on the space of probability distributions result in different Fokker-Planck equations for the same process. Each of these Fokker-Planck equations has a unique global equilibrium, which is a Gibbs distribution. In this paper we study the {em speed of convergence} towards global equilibrium for the solution of these Fokker-Planck equations on a graph, and prove that the convergence is indeed exponential. The rate as measured by the decay of the $L_2$ norm can be bound in terms of the spectral gap of the Laplacian of the graph, and as measured by the decay of (relative) entropy be bound using the modified logarithmic Sobolev constant of the graph. With the convergence result, we also prove two Talagrand-type inequalities relating relative entropy and Wasserstein metric, based on two different metrics introduced in [CHLZ] The first one is a local inequality, while the second is a global inequality with respect to the lower bound metric from [CHLZ].
We consider a class of Fokker--Planck equations with linear diffusion and superlinear drift enjoying a formal Wasserstein-like gradient flow structure with convex mobility function. In the drift-dominant regime, the equations have a finite critical m ass above which the measure minimising the associated entropy functional displays a singular component. Our approach, which addresses the one-dimensional case, is based on a reformulation of the problem in terms of the pseudo-inverse distribution function. Motivated by the structure of the equation in the new variables, we establish a general framework for global-in-time existence, uniqueness and regularity of monotonic viscosity solutions to a class of nonlinear degenerate (resp. singular) parabolic equations, using as a key tool comparison principles and maximum arguments. We then focus on a specific equation and study in more detail the regularity and dynamics of solutions. In particular, blow-up behaviour, formation of condensates (i.e. Dirac measures at zero) and long-time asymptotics are investigated. As a consequence, in the mass-supercritical case, solutions will blow up in $L^infty$ in finite time and---understood in a generalised, measure sense---they will eventually have condensate. We further show that the singular part of the measure solution does in general interact with the density and that condensates can be transient. The equations considered are motivated by a model for bosons introduced by Kaniadakis and Quarati (1994), which has a similar entropy structure and a critical mass if $dge3$.
106 - Yuzhe Zhu 2020
This article addresses the local boundedness and Holder continuity of weak solutions to kinetic Fokker-Planck equations with general transport operators and rough coefficients. These results are due to the mixing effect of diffusion and transport. Al though the equation is parabolic only in the velocity variable, it has a hypoelliptic structure provided that the transport part $partial_t+b(v)cdot abla_x$ is nondegenerate in some sense. We achieve the results by revisiting the method, proposed by Golse, Imbert, Mouhot and Vasseur in the case $b(v)= v$, that combines the elliptic De Giorgi-Nash-Moser theory with velocity averaging lemmas.
133 - Francois Bolley 2009
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasser stein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality for the distribution of the particle system leads to quantitative deviation bounds on the approximation of the equilibrium solution of the equation by an empirical mean of the particles at given time.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا