ترغب بنشر مسار تعليمي؟ اضغط هنا

Second order McKean-Vlasov SDEs and kinetic Fokker-Planck-Kolmogorov equations

139   0   0.0 ( 0 )
 نشر من قبل Xicheng Zhang
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Xicheng Zhang




اسأل ChatGPT حول البحث

In this paper we study second order stochastic differential equations with measurable and density-distribution dependent coefficients. Through establishing a maximum principle for kinetic Fokker-Planck-Kolmogorov equations with distribution-valued inhomogeneous term, we show the existence of weak solutions under mild assumptions. Moreover, by using the Holder regularity estimate obtained recently in cite{GIMV19}, we also show the well-posedness of generalized martingale problems when diffusion coefficients only depend on the position variable (not necessarily continuous). Even in the non density-distribution dependent case, it seems that this is the first result about the well-posedness of SDEs with measurable diffusion coefficients.



قيم البحث

اقرأ أيضاً

We consider conditional McKean-Vlasov stochastic differential equations (SDEs), such as the ones arising in the large-system limit of mean field games and particle systems with mean field interactions when common noise is present. The conditional tim e-marginals of the solutions to these SDEs satisfy non-linear stochastic partial differential equations (SPDEs) of the second order, whereas the laws of the conditional time-marginals follow Fokker-Planck equations on the space of probability measures. We prove two superposition principles: The first establishes that any solution of the SPDE can be lifted to a solution of the conditional McKean-Vlasov SDE, and the second guarantees that any solution of the Fokker-Planck equation on the space of probability measures can be lifted to a solution of the SPDE. We use these results to obtain a mimicking theorem which shows that the conditional time-marginals of an Ito process can be emulated by those of a solution to a conditional McKean-Vlasov SDE with Markovian coefficients. This yields, in particular, a tool for converting open-loop controls into Markovian ones in the context of controlled McKean-Vlasov dynamics.
101 - Feng-Yu Wang 2021
By refining a recent result of Xie and Zhang, we prove the exponential ergodicity under a weighted variation norm for singular SDEs with drift containing a local integrable term and a coercive term. This result is then extended to singular reflecting SDEs as well as singular McKean-Vlasov SDEs with or without reflection. We also present a general result deducing the uniform ergodicity of McKean-Vlasov SDEs from that of classical SDEs. As an application, the $L^1$-exponential convergence is derived for a class of non-symmetric singular granular media equations.
We prove a new uniqueness result for solutions to Fokker-Planck-Kolmogorov (FPK) equations for probability measures on infinite-dimensional spaces. We consider infinite-dimensional drifts that admit certain finite-dimensional approximations. In contr ast to most of the previous work on FPK-equations in infinite dimensions, we include cases with non-constant coefficients in the second order part and also include degenerate cases where these coefficients can even be zero. Also a new existence result is proved. Some applications to Fokker-Planck-Kolmogorov equations associated with SPDEs are presented.
128 - Francois Bolley 2009
We consider a Vlasov-Fokker-Planck equation governing the evolution of the density of interacting and diffusive matter in the space of positions and velocities. We use a probabilistic interpretation to obtain convergence towards equilibrium in Wasser stein distance with an explicit exponential rate. We also prove a propagation of chaos property for an associated particle system, and give rates on the approximation of the solution by the particle system. Finally, a transportation inequality for the distribution of the particle system leads to quantitative deviation bounds on the approximation of the equilibrium solution of the equation by an empirical mean of the particles at given time.
81 - Panpan Ren , Feng-Yu Wang 2020
The following type exponential convergence is proved for (non-degenerate or degenerate) McKean-Vlasov SDEs: $$W_2(mu_t,mu_infty)^2 +{rm Ent}(mu_t|mu_infty)le c {rm e}^{-lambda t} minbig{W_2(mu_0, mu_infty)^2,{rm Ent}(mu_0|mu_infty)big}, tge 1,$$ whe re $c,lambda>0$ are constants, $mu_t$ is the distribution of the solution at time $t$, $mu_infty$ is the unique invariant probability measure, ${rm Ent}$ is the relative entropy and $W_2$ is the $L^2$-Wasserstein distance. In particular, this type exponential convergence holds for some (non-degenerate or degenerate) granular media type equations generalizing those studied in [CMV, GLW] on the exponential convergence in a mean field entropy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا