ترغب بنشر مسار تعليمي؟ اضغط هنا

Analysis of a variational model for nematic shells

131   0   0.0 ( 0 )
 نشر من قبل Antonio Segatti
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We analyze an elastic surface energy which was recently introduced by G. Napoli and L.Vergori to model thin films of nematic liquid crystals. We show how a novel approach that takes into account also the extrinsic properties of the surfaces coated by the liquid crystal leads to considerable differences with respect to the classical intrinsic energy. Our results concern three connected aspects: i) using methods of the calculus of variations, we establish a relation between the existence of minimizers and the topology of the surface; ii) we prove, by a Ginzburg-Landau approximation, the well-posedness of the gradient flow of the energy; iii) in the case of a parametrized axisymmetric torus we obtain a stronger characterization of global and local minimizers, which we supplement with numerical experiments.



قيم البحث

اقرأ أيضاً

We derive a new variational principle, leading to a new momentum map and a new multisymplectic formulation for a family of Euler--Poincare equations defined on the Virasoro-Bott group, by using the inverse map (also called `back-to-labels map). This family contains as special cases the well-known Korteweg-de Vries, Camassa-Holm, and Hunter-Saxton soliton equations. In the conclusion section, we sketch opportunities for future work that would apply the new Clebsch momentum map with $2$-cocycles derived here to investigate a new type of interplay among nonlinearity, dispersion and noise.
The topology and the geometry of a surface play a fundamental role in determining the equilibrium configurations of thin films of liquid crystals. We propose here a theoretical analysis of a recently introduced surface Frank energy, in the case of tw o-dimensional nematic liquid crystals coating a toroidal particle. Our aim is to show how a different modeling of the effect of extrinsic curvature acts as a selection principle among equilibria of the classical energy, and how new configurations emerge. In particular, our analysis predicts the existence of new stable equilibria with complex windings.
Macroscopic equations arising out of stochastic particle systems in detailed balance (called dissipative systems or gradient flows) have a natural variational structure, which can be derived from the large-deviation rate functional for the density of the particle system. While large deviations can be studied in considerable generality, these variational structures are often restricted to systems in detailed balance. Using insights from macroscopic fluctuation theory, in this work we aim to generalise this variational connection beyond dissipative systems by augmenting densities with fluxes, which encode non-dissipative effects. Our main contribution is an abstract framework, which for a given flux-density cost and a quasipotential, provides a decomposition into dissipative and non-dissipative components and a generalised orthogonality relation between them. We then apply this abstract theory to various stochastic particle systems -- independent copies of jump processes, zero-range processes, chemical-reaction networks in complex balance and lattice-gas models.
We derive both {em local} and {em global} generalized {em Bianchi identities} for classical Lagrangian field theories on gauge-natural bundles. We show that globally defined generalized Bianchi identities can be found without the {em a priori} introd uction of a connection. The proof is based on a {em global} decomposition of the {em variational Lie derivative} of the generalized Euler--Lagrange morphism and the representation of the corresponding generalized Jacobi morphism on gauge-natural bundles. In particular, we show that {em within} a gauge-natural invariant Lagrangian variational principle, the gauge-natural lift of infinitesimal principal automorphism {em is not} intrinsically arbitrary. As a consequence the existence of {em canonical} global superpotentials for gauge-natural Noether conserved currents is proved without resorting to additional structures.
We consider the focusing nonlinear Schrodinger equation on a large class of rotationally symmetric, noncompact manifolds. We prove the existence of a solitary wave by perturbing off the flat Euclidean case. Furthermore, we study the stability of the solitary wave under radial perturbations by analyzing spectral properties of the associated linearized operator. Finally, in the L2-critical case, by considering the Vakhitov-Kolokolov criterion (see also results of Grillakis-Shatah-Strauss), we provide numerical evidence showing that the introduction of a nontrivial geometry destabilizes the solitary wave in a wide variety of cases, regardless of the curvature of the manifold. In particular, the parameters of the metric corresponding to standard hyperbolic space will lead to instability consistent with the blow-up results of Banica-Duyckaerts (2015). We also provide numerical evidence for geometries under which it would be possible for the Vakhitov-Kolokolov condition to suggest stability, provided certain spectral properties hold in these spaces
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا