ﻻ يوجد ملخص باللغة العربية
We calculate the Doppler broadening of the $W^-$ resonance produced in $bar{ u}_e e^-$ collisions of cosmic anti-neutrinos with $E_{ u}approx 6.3 PeV$ with electrons in atoms up to Iron. Revisiting this issue is prompted by recent observations of PeV neutrinos by Ice-Cube. Despite its poor energy resolution, the $20%$ Doppler broadening of the resonance due to electronic motions can produce observable effects via non-linear neutrino absorption near the resonance. The attendant suppression of the peak cross section allows $bar{ u}_e$ to travel correspondingly longer distances. While this effect is unlikely to be directly detected in the near future, it may facilitate terrestrial tomography at depths of $sim 10 km$, complementing deeper explorations using the more frequent nuclear interactions at lower energies.
We discuss some motivations for detecting high-energy neutrinos through the pure electroweak processes such as $bar{ u}_e e^-to W^- $ and $bar{ u}_e e^-to W^-gamma$. We argue that the latter process can be viewed as an enhancement to the former one. The event-rate enhancement is estimated.
Absorption of high-energy $bar{ u}_e$ over electrons above the W boson production threshold is reexamined. It is pointed out that, in the case of photon emissions along the direction of incident high-energy $bar{ u}_e$, the kinematically allowed aver
The Glashow resonant scattering, $i.e$. ${overline{ u}^{}_{e} + e^{-} rightarrow W^{-} rightarrow text{anything}}$, offers us a possibility of disentangling $overline{ u}^{}_{e}$ from the total astrophysical neutrino fluxes. Meanwhile, a great number
The processes of neutrino production of electron-positron pairs, $ u bar u to e^- e^+$ and $ u to u e^- e^+$, in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau level
Detecting TeV--PeV cosmic neutrinos provides crucial tests of neutrino physics and astrophysics. The statistics of IceCube and the larger proposed IceCube-Gen2 demand calculations of neutrino-nucleus interactions subdominant to deep-inelastic scatter