ﻻ يوجد ملخص باللغة العربية
The Glashow resonant scattering, $i.e$. ${overline{ u}^{}_{e} + e^{-} rightarrow W^{-} rightarrow text{anything}}$, offers us a possibility of disentangling $overline{ u}^{}_{e}$ from the total astrophysical neutrino fluxes. Meanwhile, a great number of high-energy neutrino telescopes, with various detection mechanisms, are advancing towards a better understanding of one of the most energetic frontiers of the Universe. In this work, we investigate a connection between through-going muons at IceCube and the Glashow resonance signal through the channel $W^{-} rightarrow mu$. We find that for IceCube, muons from $overline{ u}^{}_{e}$ can induce a $sim20%$ excess of PeV events around the horizontal direction. However, the current statistic of IceCube is not enough to observe such an excess. We also address the novel possibility of $overline{ u}^{}_{e}$ detection via $W^{-} rightarrow tau$ at telescopes aiming to detect Earth-skimming and mountain-penetrating neutrinos. The subsequent hadronic decay of a tau will induce an extensive air shower which can be detected by telescopes with Cherenkov or fluorescence techniques. Similar to IceCube, it is challenging to observe the Glashow resonance excess from the Earth-skimming neutrinos. Nevertheless, we find it is promising to observe Glashow resonance events with a mountain as the target.
The IceCube neutrino discovery was punctuated by three showers with $E_ u$ ~ 1-2 PeV. Interest is intense in possible fluxes at higher energies, though a marked deficit of $E_ u$ ~ 6 PeV Glashow resonance events implies a spectrum that is soft and/or
Detecting TeV--PeV cosmic neutrinos provides crucial tests of neutrino physics and astrophysics. The statistics of IceCube and the larger proposed IceCube-Gen2 demand calculations of neutrino-nucleus interactions subdominant to deep-inelastic scatter
We perform a new dark matter hot spot analysis using ten years of public IceCube data. In this analysis we assume dark matter self-annihilates to neutrino pairs and treat the production sites as discrete point sources. For neutrino telescopes these s
We calculate the Doppler broadening of the $W^-$ resonance produced in $bar{ u}_e e^-$ collisions of cosmic anti-neutrinos with $E_{ u}approx 6.3 PeV$ with electrons in atoms up to Iron. Revisiting this issue is prompted by recent observations of Pe
We present the results of searches for point-like sources of neutrinos based on the first combined analysis of data from both the ANTARES and IceCube neutrino telescopes. The combination of both detectors which differ in size and location forms a win