ﻻ يوجد ملخص باللغة العربية
Absorption of high-energy $bar{ u}_e$ over electrons above the W boson production threshold is reexamined. It is pointed out that, in the case of photon emissions along the direction of incident high-energy $bar{ u}_e$, the kinematically allowed average energy carried by the final state hard photon can be $leq 1%$ of the incident $bar{ u}_e$ energy above the W boson production threshold. The differential energy spectrum for the final state hard photon is calculated. We also discuss implications of our results for the prospective search of high-energy $bar{ u}_e$ through this final state hard photon.
We discuss some motivations for detecting high-energy neutrinos through the pure electroweak processes such as $bar{ u}_e e^-to W^- $ and $bar{ u}_e e^-to W^-gamma$. We argue that the latter process can be viewed as an enhancement to the former one. The event-rate enhancement is estimated.
The processes of neutrino production of electron-positron pairs, $ u bar u to e^- e^+$ and $ u to u e^- e^+$, in a magnetic field of arbitrary strength, where electrons and positrons can be created in the states corresponding to excited Landau level
We calculate the Doppler broadening of the $W^-$ resonance produced in $bar{ u}_e e^-$ collisions of cosmic anti-neutrinos with $E_{ u}approx 6.3 PeV$ with electrons in atoms up to Iron. Revisiting this issue is prompted by recent observations of Pe
Distinguishing the Dirac and Majorana nature of neutrinos remains one of the most important tasks in neutrino physics. By assuming that the $tau^- to pi^- mu^- e^+ u$ (or $bar{ u}$) decay is resonantly enhanced by the exchange of an intermediate mas
QCD one-loop corrections to the semileptonic process $e^+ e^- to mu^- bar u_mu u bar d$ are computed. We compare the exact calculation with a ``naive approach to strong radiative corrections which has been widely used in the literature and discuss t