ﻻ يوجد ملخص باللغة العربية
We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detectors pixels. Absorption and phase-shifting images of a dragonflys hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {mu}m width cross veins.
We present a new method for real- and complex-valued image reconstruction from two intensity measurements made in the Fourier plane: the Fourier magnitude of the unknown image, and the intensity of the interference pattern arising from superimpositio
We demonstrate the in-line holography for soft x-ray vortex beam having an orbital angular momentum. A hologram is recorded as an interference between a Bragg diffraction wave from a fork grating and a divergence wave generated by a Fresnel zone plat
The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz (THz) fields have show
Terahertz (THz) emission spectroscopy is a powerful method that allows one to measure the ultrafast dynamics of polarization, current, or magnetization in a material based on THz emission from the material. However, the practical implementation of th
The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity