ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase retrieval combined with digital holography

141   0   0.0 ( 0 )
 نشر من قبل Eliyahu Osherovich
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method for real- and complex-valued image reconstruction from two intensity measurements made in the Fourier plane: the Fourier magnitude of the unknown image, and the intensity of the interference pattern arising from superimposition of the original signal with a reference beam. This approach can provide significant advantages in digital holography since it poses less stringent requirements on the reference beam. In particular, it does not require spatial separation between the sought signal and the reference beam. Moreover, the reference beam need not be known precisely, and in fact, may contain severe errors, without leading to a deterioration in the reconstruction quality. Numerical simulations are presented to demonstrate the speed and quality of reconstruction.



قيم البحث

اقرأ أيضاً

The first step to gain optical control over the ultrafast processes initiated by light in solids is a correct identification of the physical mechanisms at play. Among them, exciton formation has been identified as a crucial phenomenon which deeply af fects the electro-optical properties of most semiconductors and insulators of technological interest. While recent experiments based on attosecond spectroscopy techniques have demonstrated the possibility to observe the early-stage exciton dynamics, the description of the underlying exciton properties remains non-trivial. In this work we propose a new method called extended Ptychographic Iterative engine for eXcitons (ePIX), capable of reconstructing the main physical properties which determine the evolution of the quasi-particle with no prior knowledge of the exact relaxation dynamics or the pump temporal characteristics. By demonstrating its accuracy even when the exciton dynamics is comparable to the pump pulse duration, ePIX is established as a powerful approach to widen our knowledge of solid-state physics.
In both light optics and electron optics, the amplitude of a wave scattered by an object is an observable that is usually recorded in the form of an intensity distribution in a real space image or a diffraction image. In contrast, retrieval of the ph ase of a scattered wave is a well-known challenge, which is usually approached by interferometric or numerical methods. In electron microscopy, as a result of constraints in the lens setup, it is particularly difficult to retrieve the phase of a diffraction image. Here, we use a defocused beam generated by a nanofabricated hologram to form a reference wave that can be interfered with a diffracted beam. This setup provides an extended interference region with the sample wavefunction in the Fraunhofer plane. As a case study, we retrieve the phase of an electron vortex beam. Beyond this specific example, the approach can be used to retrieve the wavefronts of diffracted beams from a wide range of samples.
In recent years, the mathematical and algorithmic aspects of the phase retrieval problem have received considerable attention. Many papers in this area mention crystallography as a principal application. In crystallography, the signal to be recovered is periodic and comprised of atomic distributions arranged homogeneously in the unit cell of the crystal. The crystallographic problem is both the leading application and one of the hardest forms of phase retrieval. We have constructed a graded set of benchmark problems for evaluating algorithms that perform this type of phase retrieval. The data, publicly available online, is provided in an easily interpretable format. We also propose a simple and unambiguous success/failure criterion based on the actual needs in crystallography. Baseline runtimes were obtained with an iterative algorithm that is similar but more transparent than those used in crystallography. Empirically, the runtimes grow exponentially with respect to a new hardness parameter: the sparsity of the signal autocorrelation. We also review the algorithms used by the leading software packages. This set of benchmark problems, we hope, will encourage the development of new algorithms for the phase retrieval problem in general, and crystallography in particular.
We present a technically simple implementation of quantitative phase imaging in confocal microscopy based on synthetic optical holography with sinusoidal-phase reference waves. Using a Mirau interference objective and low-amplitude vertical sample vi bration with a piezo-controlled stage, we record synthetic holograms on commercial confocal microscopes (Nikon, model: A1R; Zeiss: model: LSM-880), from which quantitative phase images are reconstructed. We demonstrate our technique by stain-free imaging of cervical (HeLa) and ovarian (ES-2) cancer cells and stem cell (mHAT9a) samples. Our technique has the potential to extend fluorescence imaging applications in confocal microscopy by providing label-free cell finding, monitoring cell morphology, as well as non-perturbing long-time observation of live cells based on quantitative phase contrast.
We report here on terahertz (THz) digital holography on a biological specimen. A continuous-wave (CW) THz in-line holographic setup was built based on a 2.52 THz CO2 pumped THz laser and a pyroelectric array detector. We introduced novel statistical method of obtaining true intensity values for the pyroelectric array detectors pixels. Absorption and phase-shifting images of a dragonflys hind wing were reconstructed simultaneously from single in-line hologram. Furthermore, we applied phase retrieval routines to eliminate twin image and enhanced the resolution of the reconstructions by hologram extrapolation beyond the detector area. The finest observed features are 35 {mu}m width cross veins.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا