ترغب بنشر مسار تعليمي؟ اضغط هنا

Dynamics in Young Star Clusters: From Planets to Massive Stars

166   0   0.0 ( 0 )
 نشر من قبل Christoph Olczak
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The young star clusters we observe today are the building blocks of a new generation of stars and planets in our Galaxy and beyond. Despite their fundamental role we still lack knowledge about the conditions under which star clusters form and the impact of these often harsh environments on the evolution of their stellar and substellar members. We demonstrate the vital role numerical simulations play to uncover both key issues. Using dynamical models of different star cluster environments we show the variety of effects stellar interactions potentially have. Moreover, our significantly improved measure of mass segregation reveals that it can occur rapidly even for star clusters without substructure. This finding is a critical step to resolve the controversial debate on mass segregation in young star clusters and provides strong constraints on their initial conditions.



قيم البحث

اقرأ أيضاً

Star clusters appear to be the ideal environment for the assembly of neutron star-neutron star (NS-NS) and black hole-neutron star (BH-NS) binaries. These binaries are among the most interesting astrophysical objects, being potential sources of gravi tational waves (GWs) and gamma-ray bursts. We use for the first time high-precision N-body simulations of young massive and open clusters to study the origin and dynamical evolution of NSs, within clusters with different initial masses, metallicities, primordial binary fractions, and prescriptions for the compact object natal kicks at birth. We find that the radial profile of NSs is shaped by the BH content of the cluster, which partially quenches the NS segregation due to the BH-burning process. This leaves most of the NSs out of the densest cluster regions, where NS-NS and BH-NS binaries could potentially form. Due to a large velocity kick that they receive at birth, most of the NSs escape the host clusters, with the bulk of their retained population made up of NSs of $sim 1.3$ M$_odot$ coming from the electron-capture supernova process. The details of the primordial binary fraction and pairing can smear out this trend. Finally, we find that a subset of our models produce NS-NS mergers, leading to a rate of $sim 0.01$--$0.1$ Gpc$^{-3}$ yr$^{-1}$ in the local Universe, and compute an upper limit of $sim 3times 10^{-2}$--$3times 10^{-3}$ Gpc$^{-3}$ yr$^{-1}$ for the BH-NS merger rate. Our estimates are several orders of magnitude smaller than the current empirical merger rate from LIGO/Virgo, in agreement with the recent rate estimates for old globular clusters.
135 - G. Cugno 2019
Within the NaCo-ISPY exoplanet imaging program, we aim at detecting and characterizing the population of low-mass companions at wide separations ($gtrsim$10AU), focusing in particular on young stars either hosting a known protoplanetary disk or a deb ris disk. R CrA is one of the youngest (1-3 Myr) and most promising objects in our sample because of two previous studies that suggested the presence of a close companion. Our aim is to directly image and characterize the companion for the first time. We observed R CrA twice with the NaCo instrument at VLT in the $L$ filter with a one year time baseline in between. The high-contrast imaging data were reduced and analyzed, and in both datasets the companion candidate was detected. The companion is detected at a separation of $196.8pm4.5$/$196.6pm5.9$ mas ($18.7pm1.3$/$18.7pm1.4$ AU) and position angle of $134.7pm0.5^circ/133.7pm0.7^circ$ in the first/second epoch observation. We measure a contrast of $7.29pm0.18$/$6.70pm0.15$ mag with respect to the primary. Stellar proper motion study rejects the hypothesis of the signal being a background object. The companion candidate orbits in the clockwise direction and, if on a face-on circular orbit, its period is $sim43-47$ yr. This value disagrees with the estimated orbital motion and therefore a face-on circular orbit may be excluded. Depending on the assumed age, extinction and brightness of the primary, the stellar companion has a mass between $0.10pm0.02, M_odot$ and $1.03^{+0.20}_{-0.18},M_odot$ range, if no contribution from circumsecondary material is taken into account. The presence of the companion needs to be taken into account when analyzing the complex circumstellar environment of R CrA.
Stars mostly form in groups consisting of a few dozen to several ten thousand members. For 30 years, theoretical models provide a basic concept of how such star clusters form and develop: they originate from the gas and dust of collapsing molecular c louds. The conversion from gas to stars being incomplete, the left over gas is expelled, leading to cluster expansion and stars becoming unbound. Observationally, a direct confirmation of this process has proved elusive, which is attributed to the diversity of the properties of forming clusters. Here we take into account that the true cluster masses and sizes are masked, initially by the surface density of the background and later by the still present unbound stars. Based on the recent observational finding that in a given star-forming region the star formation efficiency depends on the local density of the gas, we use an analytical approach combined with mbox{N-body simulations, to reveal} evolutionary tracks for young massive clusters covering the first 10 Myr. Just like the Hertzsprung-Russell diagram is a measure for the evolution of stars, these tracks provide equivalent information for clusters. Like stars, massive clusters form and develop faster than their lower-mass counterparts, explaining why so few massive cluster progenitors are found.
We have carried out a search for massive white dwarfs (WDs) in the direction of young open star clusters using the Gaia DR2 database. The aim of this survey was to provide robust data for new and previously known high-mass WDs regarding cluster membe rship, to highlight WDs previously included in the Initial Final Mass Relation (IFMR) that are unlikely members of their respective clusters according to Gaia astrometry and to select an unequivocal WD sample that could then be compared with the host clusters turnoff masses. All promising WD candidates in each cluster CMD were followed up with spectroscopy from Gemini in order to determine whether they were indeed WDs and derive their masses, temperatures and ages. In order to be considered cluster members, white dwarfs were required to have proper motions and parallaxes within 2, 3, or 4-$sigma$ of that of their potential parent cluster based on how contaminated the field was in their region of the sky, have a cooling age that was less than the cluster age and a mass that was broadly consistent with the IFMR. A number of WDs included in curre
By analysing models of the young massive cluster R136 in 30 Doradus, set-up using the herewith introduced and publicly made available code McLuster, we investigate and compare different methods for detecting and quantifying mass segregation and subst ructure in non-seeing limited N-body data. For this purpose we generate star cluster models with different degrees of mass segregation and fractal substructure and analyse them. We quantify mass segregation by measuring, from the projected 2d model data, the mass function slope in radial annuli, by looking for colour gradients in radial colour profiles, by measuring Allisons Lambda parameter, and by determining the local stellar surface density around each star. We find that these methods for quantifying mass segregation often produce ambiguous results. Most reliable for detecting mass segregation is the mass function slope method, whereas the colour gradient method is the least practical in an R136-like configuration. The other two methods are more sensitive to low degrees of mass segregation but are computationally much more demanding. We also discuss the effect of binaries on these measures. Moreover, we quantify substructure by looking at the projected radial stellar density profile, by comparing projected azimuthal stellar density profiles, and by determining Cartwright & Whitworths Q parameter. We find that only high degrees of substructure affect the projected radial density profile, whereas the projected azimuthal density profile is very sensitive to substructure. The Q parameter is also sensitive to substructure but its absolute value shows a dependence on the radial density gradient of the cluster and is strongly influenced by binaries. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا