ترغب بنشر مسار تعليمي؟ اضغط هنا

Simulating three-dimensional nonthermal high-energy photon emission in colliding-wind binaries

115   0   0.0 ( 0 )
 نشر من قبل Klaus Reitberger
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive stars in binary systems have long been regarded as potential sources of high-energy gamma rays.The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which ubsequently emit gamma rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region - as obtained by a numerical hydrodynamics and particle transport model - we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modelled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 0.01, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.



قيم البحث

اقرأ أيضاً

Massive stars in binary systems (as WR140, WR147 or $eta$ Carinae) have long been regarded as potential sources of high-energy $gamma$-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic parti cles which subsequently might be able to emit $gamma$-rays. Detailed numerical hydrodynamic simulations have already offered insight in the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a 3D-hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion and the radiative cooling of the shocked plasma. In our treatment of charged particles we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions and other energy loss mechanisms.
330 - Delia Volpi 2011
Many early-type stars are in binary systems. A number of them shows radio emissivity with periodic variability. This variability is associated with non-thermal synchrotron radiation emitted by relativistic electrons. The strong shocks necessary to ac celerate the electrons up to high energies are produced by the collision of the radiatively-driven stellar winds. A study of the non-thermal emission is necessary in order to investigate O-star colliding wind binaries. Here preliminary results of our modeling of the colliding winds in Cyg OB2 No.9 are presented.
280 - R. Blomme 2009
In colliding-wind binaries, shocks accelerate a fraction of the electrons up to relativistic speeds. These electrons then emit synchrotron radiation at radio wavelengths. Whether or not we detect this radiation depends on the size of the free-free ab sorption region in the stellar winds of both components. One expects long-period binaries to be detectable, but not the short-period ones. It was therefore surprising to find that Cyg OB2 No. 8A (P = 21.9 d) does show variability locked with orbital phase. To investigate this, we developed a model for the relativistic electron generation (including cooling and advection) and the radiative transfer of the synchrotron emission through the stellar wind. Using this model, we show that the synchrotron emitting region in Cyg OB2 No. 8A does extend far enough beyond the free-free absorption region to generate orbit-locked variability in the radio flux. This model can also be applied to other non-thermal emitters and will prove useful in interpreting observations from future surveys, such as COBRaS - the Cyg OB2 Radio Survey.
308 - M. Werner , O. Reimer , A. Reimer 2013
Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativi stic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.
275 - M. De Becker , F. Raucq 2013
Massive systems made of two or more stars are known to be the site for interesting physical processes -- including at least in some cases -- particle acceleration. Over the past decade, this topic motivated a particular effort to unveil the propertie s of these systems and characterize the circumstances responsible for the acceleration of particles and the potential role of pre-supernova massive stars in the production of high energy particles in our Galaxy. Although previous studies on this topic were mostly devoted to processes in general, or to a few individual objects in particular, a unified target-oriented census of particle-accelerating colliding-wind binaries (hereafter PACWBs) does not exist yet. This paper aims at making a general and unified census of these systems, emphasizing their main properties. A general discussion includes energetic considerations along with wind properties in relation with non-thermal emission processes that are likely at work in colliding-wind binaries. Finally, some guidelines for future observational and theoretical studies are drawn.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا