ترغب بنشر مسار تعليمي؟ اضغط هنا

Catalogue of particle-accelerating colliding-wind binaries

269   0   0.0 ( 0 )
 نشر من قبل Michael De Becker
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive systems made of two or more stars are known to be the site for interesting physical processes -- including at least in some cases -- particle acceleration. Over the past decade, this topic motivated a particular effort to unveil the properties of these systems and characterize the circumstances responsible for the acceleration of particles and the potential role of pre-supernova massive stars in the production of high energy particles in our Galaxy. Although previous studies on this topic were mostly devoted to processes in general, or to a few individual objects in particular, a unified target-oriented census of particle-accelerating colliding-wind binaries (hereafter PACWBs) does not exist yet. This paper aims at making a general and unified census of these systems, emphasizing their main properties. A general discussion includes energetic considerations along with wind properties in relation with non-thermal emission processes that are likely at work in colliding-wind binaries. Finally, some guidelines for future observational and theoretical studies are drawn.



قيم البحث

اقرأ أيضاً

127 - M. De Becker 2015
The long-term (over more than one decade) X-ray emission from two massive stellar systems known to be particle accelerators is investigated using XMM-Newton. Their X-ray properties are interpreted taking into account recent information about their mu ltiplicity and orbital parameters. The two targets, HD168112 and HD167971 appear to be overluminous in X-rays, lending additional support to the idea that a significant contribution of the X-ray emission comes from colliding-wind regions. The variability of the X-ray flux from HD168112 is interpreted in terms of varying separation expected to follow the 1/D rule for adiabatic shocked winds. For HD167971, marginal decrease of the X-ray flux in September 2002 could tentatively be explained by a partial wind eclipse in the close pair. No long-term variability could be demonstrated despite the significant difference of separation between 2002 and 2014. This suggests the colliding-wind region in the wide orbit does not contribute a lot to the total X-ray emission, with a main contribution coming from the radiative shocked winds in the eclipsing pair. The later result provides evidence that shocks in a colliding-wind region may be efficient particle accelerators even in the absence of bright X-ray emission, suggesting particle acceleration may operate in a wide range of conditions. Finally, in hierarchical triple O-type systems, thermal X-rays do not necessarily constitute an efficient tracer to detect the wind-wind interaction in the long period orbit.
Particle-accelerating colliding-wind binaries (PACWBs) are multiple systems made of early-type stars able to accelerate particles up to relativistic velocities. The relativistic particles can interact with different fields (magnetic or radiation) in the colliding-wind region and produce non-thermal emission. In many cases, non-thermal synchrotron radiation might be observable and thus constitute an indicator of the existence of a relativistic particle population in these multiple systems. To date, the catalogue of PACWBs includes about 40 objects spread over many stellar types and evolutionary stages, with no clear trend pointing to privileged subclasses of objects likely to accelerate particles. This paper aims at discussing critically some criteria for selecting new candidates among massive binaries. The subsequent search for non-thermal radiation in these objects is expected to lead to new detections of particle accelerators. On the basis of this discussion, some broad ideas for observation strategies are formulated. At this stage of the investigation of PACWBs, there is no clear reason to consider particle acceleration in massive binaries as an anomaly or even as a rare phenomenon. We therefore consider that several PACWBs will be detected in the forthcoming years, essentially using sensitive radio interferometers which are capable of measuring synchrotron emission from colliding-wind binaries. Prospects for high-energy detections are also briefly addressed.
Massive stars in binary systems (as WR140, WR147 or $eta$ Carinae) have long been regarded as potential sources of high-energy $gamma$-rays. The emission is thought to arise in the region where the stellar winds collide and produce relativistic parti cles which subsequently might be able to emit $gamma$-rays. Detailed numerical hydrodynamic simulations have already offered insight in the complex dynamics of the wind collision region (WCR), while independent analytical studies, albeit with simplified descriptions of the WCR, have shed light on the spectra of charged particles. In this paper, we describe a combination of these two approaches. We present a 3D-hydrodynamical model for colliding stellar winds and compute spectral energy distributions of relativistic particles for the resulting structure of the WCR. The hydrodynamic part of our model incorporates the line-driven acceleration of the winds, gravity, orbital motion and the radiative cooling of the shocked plasma. In our treatment of charged particles we consider diffusive shock acceleration in the WCR and the subsequent cooling via inverse Compton losses (including Klein-Nishina effects), bremsstrahlung, collisions and other energy loss mechanisms.
We have compiled a list of 36 O+O and 89 Wolf-Rayet binary candidates in the Milky Way and Magellanic clouds detected with the Chandra, XMM-Newton and ROSAT satellites to probe the connection between their X-ray properties and their system characteri stics. Of the WR binaries with published parameters, all but two have kT > 0.9 keV. The most X-ray luminous WR binaries are typically very long period systems. The WR binaries show a nearly four-order of magnitude spread in X-ray luminosity, even among among systems with very similar WR primaries. Among the O+O binaries, short-period systems generally have soft X-ray spectra and longer period systems show harder X-ray spectra, again with a large spread in LX/Lbol.
The dynamics of colliding wind binary systems and conditions for efficient particle acceleration therein have attracted multiple numerical studies in the recent years. These numerical models seek an explanation of the thermal and non-thermal emission of these systems as seen by observations. In the non-thermal regime, radio and X-ray emission is observed for several of these colliding-wind binaries, while gamma-ray emission has so far only been found in $eta$ Carinae and possibly in WR 11. Energetic electrons are deemed responsible for a large fraction of the observed high-energy photons in these systems. Only in the gamma-ray regime there might be, depending on the properties of the stars, a significant contribution of emission from neutral pion decay. Thus, studying the emission from colliding-wind binaries requires detailed models of the acceleration and propagation of energetic electrons. This in turn requires a detailed understanding of the magnetic field, which will not only affect the energy losses of the electrons but in case of synchrotron emission also the directional dependence of the emissivity. In this study we investigate magnetohydrodynamic simulations of different colliding wind binary systems with magnetic fields that are strong enough to have a significant effect on the winds. Such strong fields require a detailed treatment of the near-star wind acceleration zone. We show the implementation of such simulations and discuss results that demonstrate the effect of the magnetic field on the structure of the wind collision region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا