ترغب بنشر مسار تعليمي؟ اضغط هنا

Modelling the synchrotron emission from O-star colliding wind binaries

318   0   0.0 ( 0 )
 نشر من قبل Delia Volpi Dr
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Delia Volpi




اسأل ChatGPT حول البحث

Many early-type stars are in binary systems. A number of them shows radio emissivity with periodic variability. This variability is associated with non-thermal synchrotron radiation emitted by relativistic electrons. The strong shocks necessary to accelerate the electrons up to high energies are produced by the collision of the radiatively-driven stellar winds. A study of the non-thermal emission is necessary in order to investigate O-star colliding wind binaries. Here preliminary results of our modeling of the colliding winds in Cyg OB2 No.9 are presented.



قيم البحث

اقرأ أيضاً

Some OB stars show variable non-thermal radio emission. The non-thermal emission is due to synchrotron radiation that is emitted by electrons accelerated to high energies. The electron acceleration occurs at strong shocks created by the collision of radiatively-driven stellar winds in binary systems. Here we present results of our modelling of two colliding wind systems: Cyg OB2 No. 8A and Cyg OB2 No. 9.
266 - R. Blomme 2009
In colliding-wind binaries, shocks accelerate a fraction of the electrons up to relativistic speeds. These electrons then emit synchrotron radiation at radio wavelengths. Whether or not we detect this radiation depends on the size of the free-free ab sorption region in the stellar winds of both components. One expects long-period binaries to be detectable, but not the short-period ones. It was therefore surprising to find that Cyg OB2 No. 8A (P = 21.9 d) does show variability locked with orbital phase. To investigate this, we developed a model for the relativistic electron generation (including cooling and advection) and the radiative transfer of the synchrotron emission through the stellar wind. Using this model, we show that the synchrotron emitting region in Cyg OB2 No. 8A does extend far enough beyond the free-free absorption region to generate orbit-locked variability in the radio flux. This model can also be applied to other non-thermal emitters and will prove useful in interpreting observations from future surveys, such as COBRaS - the Cyg OB2 Radio Survey.
288 - M. Werner , O. Reimer , A. Reimer 2013
Context: Colliding wind binaries (CWBs) are thought to give rise to a plethora of physical processes including acceleration and interaction of relativistic particles. Observation of synchrotron radiation in the radio band confirms there is a relativi stic electron population in CWBs. Accordingly, CWBs have been suspected sources of high-energy gamma-ray emission since the COS-B era. Theoretical models exist that characterize the underlying physical processes leading to particle acceleration and quantitatively predict the non-thermal energy emission observable at Earth. Aims: We strive to find evidence of gamma-ray emission from a sample of seven CWB systems: WR 11, WR 70, WR 125, WR 137, WR 140, WR 146, and WR 147. Theoretical modelling identified these systems as the most favourable candidates for emitting gamma-rays. We make a comparison with existing gamma-ray flux predictions and investigate possible constraints. Methods: We used 24 months of data from the Large Area Telescope (LAT) on-board the Fermi Gamma Ray Space Telescope to perform a dedicated likelihood analysis of CWBs in the LAT energy range. Results: We find no evidence of gamma-ray emission from any of the studied CWB systems and determine corresponding flux upper limits. For some CWBs the interplay of orbital and stellar parameters renders the Fermi-LAT data not sensitive enough to constrain the parameter space of the emission models. In the cases of WR140 and WR147, the Fermi-LAT upper limits appear to rule out some model predictions entirely and constrain theoretical models over a significant parameter space. A comparison of our findings to the CWB eta Car is made.
We have developed radiative transfer models of the radio emission from colliding-wind binaries (CWB) based on a hydrodynamical treatment of the wind-collision region (WCR). The archetype of CWB systems is the 7.9-yr period binary WR140, which exhibit s dramatic variations at radio wavelengths. High-resolution radio observations of WR140 permit a determination of several system parameters, particularly orbit inclination and distance, that are essential for any models of this system. A model fit to data at orbital phase 0.9 is shown, and some short comings of our model described.
Massive stars in binary systems have long been regarded as potential sources of high-energy gamma rays.The emission is principally thought to arise in the region where the stellar winds collide and accelerate relativistic particles which ubsequently emit gamma rays. On the basis of a three-dimensional distribution function of high-energy particles in the wind collision region - as obtained by a numerical hydrodynamics and particle transport model - we present the computation of the three-dimensional nonthermal photon emission for a given line of sight. Anisotropic inverse Compton emission is modelled using the target radiation field of both stars. Photons from relativistic bremsstrahlung and neutral pion decay are computed on the basis of local wind plasma densities. We also consider photon photon opacity effects due to the dense radiation fields of the stars. Results are shown for different stellar separations of a given binary system comprising of a B star and a Wolf-Rayet star. The influence of orbital orientation with respect to the line of sight is also studied by using different orbital viewing angles. For the chosen electron-proton injection ratio of 0.01, we present the ensuing photon emission in terms of two-dimensional projections maps, spectral energy distributions and integrated photon flux values in various energy bands. Here, we find a transition from hadron-dominated to lepton-dominated high-energy emission with increasing stellar separations. In addition, we confirm findings from previous analytic modeling that the spectral energy distribution varies significantly with orbital orientation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا