ﻻ يوجد ملخص باللغة العربية
The heavy-ion fusion reactions induced by neutron-rich nuclei are investigated with the improved quantum molecular dynamics (ImQMD) model. With a subtle consideration of the neutron skin thickness of nuclei and the symmetry potential, the stability of nuclei and the fusion excitation functions of heavy-ion fusion reactions $^{16}$O+$^{76}$Ge, $^{16}$O+$^{154}$Sm, $^{40}$Ca+$^{96}$Zr and $^{132}$Sn+$^{40}$Ca are systematically studied. The fusion cross sections of these reactions at energies around the Coulomb barrier can be well reproduced by using the ImQMD model. The corresponding slope parameter of the symmetry energy adopted in the calculations is $L approx 78$ MeV and the surface energy coefficient is $g_{rm sur}=18pm 1.5$ MeVfm$^2$. In addition, it is found that the surface-symmetry term significantly influences the fusion cross sections of neutron-rich fusion systems. For sub-barrier fusion, the dynamical fluctuations in the densities of the reaction partners and the enhanced surface diffuseness at neck side result in the lowering of the fusion barrier.
The dynamical mechanism of multinucleon transfer (MNT) reactions has been investigated within the dinuclear system (DNS) model, in which the sequential nucleon transfer is described by solving a set of microscopically derived master equations. Produc
Within the framework of the dinuclear system model, the production mechanism of neutron-rich heavy nuclei around N = 162 has been investigated systematically. The isotopic yields in the multinucleon transfer reaction of $^{238}$U + $^{248}$Cm was ana
Measurements of mass-angle distributions (MADs) for Cr + W reactions, providing a wide range in the neutron-to-proton ratio of the compound system, (N/Z)CN, have allowed for the dependence of quasifission on the (N/Z)CN to be determined in a model-in
The dependence of fusion dynamics on neutron excess for light nuclei is extracted. This is accomplished by comparing the average fusion cross-section at energies just above the fusion barrier for $^{12-15}$C + $^{12}$C with measurements of the intera
The dependence of fusion cross section on the isotopic composition of colliding nuclei is analysed within the dinuclear system concept for compound nucleus formation. Probabilities of fusion and surviving probabilities, ingredients of the evaporation