ﻻ يوجد ملخص باللغة العربية
In this study, we describe how WRF-Sfire is coupled with WRF-Chem to construct WRFSC, an integrated forecast system for wildfire and smoke prediction. The integrated forecast system has the advantage of not requiring a simple plume-rise model and assumptions about the size and heat release from the fire in order to determine fire emissions into the atmosphere. With WRF-Sfire, wildfire spread, plume and plume-top heights are predicted directly, at every WRF timestep, providing comprehensive meteorology and fire emissions to the chemical transport model WRF-Chem. Evaluation of WRFSC was based on comparisons between available observations to the results of two WRFSC simulations. The study found overall good agreement between forecasted and observed fire spread and smoke transport for the Witch-Guejito fire. Also the simulated PM2.5 (fine particulate matter) peak concentrations matched the observations. However, the NO and ozone levels were underestimated in the simulations and the peak concentrations were mistimed. Determining the terminal or plume-top height is one of the most important aspects of simulating wildfire plume transport, and the study found overall good agreement between simulated and observed plume-top heights, with some (10% or less) underestimation by the simulations. One of the most promising results of the study was the agreement between passive-tracer modeled plume-top heights for the Barker Canyon fire simulation and observations. This simulation took only 13h, with the first 24h forecast ready in almost 3h, making it a possible operational tool for providing emission profiles for external chemical transport models.
Prescribed burns are currently the most effective method of reducing the risk of widespread wildfires, but a largely missing component in forest management is knowing which fuels one can safely burn to minimize exposure to toxic smoke. Here we show h
This paper presents a mathematical approach to model the effects of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of
In presence of strong winds, wildfires feature nonlinear behavior, possibly inducing fire-spotting. We present a global sensitivity analysis of a new sub-model for turbulence and fire-spotting included in a wildfire spread model based on a stochastic
The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and gl
Quantifying the impact of climate change on future air quality is a challenging subject in air quality studies. An ANN model is employed to simulate hourly O3 concentrations. The model is developed based on hourly monitored values of temperature, sol