ترغب بنشر مسار تعليمي؟ اضغط هنا

Wildfire Smoke and Air Quality: How Machine Learning Can Guide Forest Management

266   0   0.0 ( 0 )
 نشر من قبل Lorenzo Tomaselli
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Prescribed burns are currently the most effective method of reducing the risk of widespread wildfires, but a largely missing component in forest management is knowing which fuels one can safely burn to minimize exposure to toxic smoke. Here we show how machine learning, such as spectral clustering and manifold learning, can provide interpretable representations and powerful tools for differentiating between smoke types, hence providing forest managers with vital information on effective strategies to reduce climate-induced wildfires while minimizing production of harmful smoke.



قيم البحث

اقرأ أيضاً

In this study, we describe how WRF-Sfire is coupled with WRF-Chem to construct WRFSC, an integrated forecast system for wildfire and smoke prediction. The integrated forecast system has the advantage of not requiring a simple plume-rise model and ass umptions about the size and heat release from the fire in order to determine fire emissions into the atmosphere. With WRF-Sfire, wildfire spread, plume and plume-top heights are predicted directly, at every WRF timestep, providing comprehensive meteorology and fire emissions to the chemical transport model WRF-Chem. Evaluation of WRFSC was based on comparisons between available observations to the results of two WRFSC simulations. The study found overall good agreement between forecasted and observed fire spread and smoke transport for the Witch-Guejito fire. Also the simulated PM2.5 (fine particulate matter) peak concentrations matched the observations. However, the NO and ozone levels were underestimated in the simulations and the peak concentrations were mistimed. Determining the terminal or plume-top height is one of the most important aspects of simulating wildfire plume transport, and the study found overall good agreement between simulated and observed plume-top heights, with some (10% or less) underestimation by the simulations. One of the most promising results of the study was the agreement between passive-tracer modeled plume-top heights for the Barker Canyon fire simulation and observations. This simulation took only 13h, with the first 24h forecast ready in almost 3h, making it a possible operational tool for providing emission profiles for external chemical transport models.
Organisms result from adaptive processes interacting across different time scales. One such interaction is that between development and evolution. Models have shown that development sweeps over several traits in a single agent, sometimes exposing pro mising static traits. Subsequent evolution can then canalize these rare traits. Thus, development can, under the right conditions, increase evolvability. Here, we report on a previously unknown phenomenon when embodied agents are allowed to develop and evolve: Evolution discovers body plans robust to control changes, these body plans become genetically assimilated, yet controllers for these agents are not assimilated. This allows evolution to continue climbing fitness gradients by tinkering with the developmental programs for controllers within these permissive body plans. This exposes a previously unknown detail about the Baldwin effect: instead of all useful traits becoming genetically assimilated, only traits that render the agent robust to changes in other traits become assimilated. We refer to this as differential canalization. This finding also has implications for the evolutionary design of artificial and embodied agents such as robots: robots robust to internal changes in their controllers may also be robust to external changes in their environment, such as transferal from simulation to reality or deployment in novel environments.
Understanding the set of elementary steps and kinetics in each reaction is extremely valuable to make informed decisions about creating the next generation of catalytic materials. With physical and mechanistic complexity of industrial catalysts, it i s critical to obtain kinetic information through experimental methods. As such, this work details a methodology based on the combination of transient rate/concentration dependencies and machine learning to measure the number of active sites, the individual rate constants, and gain insight into the mechanism under a complex set of elementary steps. This new methodology was applied to simulated transient responses to verify its ability to obtain correct estimates of the micro-kinetic coefficients. Furthermore, experimental CO oxidation data was analyzed to reveal the Langmuir-Hinshelwood mechanism driving the reaction. As oxygen accumulated on the catalyst, a transition in the mechanism was clearly defined in the machine learning analysis due to the large amount of kinetic information available from transient reaction techniques. This methodology is proposed as a new data driven approach to characterize how materials control complex reaction mechanisms relying exclusively on experimental data.
Prediction of diabetes and its various complications has been studied in a number of settings, but a comprehensive overview of problem setting for diabetes prediction and care management has not been addressed in the literature. In this document we s eek to remedy this omission in literature with an encompassing overview of diabetes complication prediction as well as situating this problem in the context of real world healthcare management. We illustrate various problems encountered in real world clinical scenarios via our own experience with building and deploying such models. In this manuscript we illustrate a Machine Learning (ML) framework for addressing the problem of predicting Type 2 Diabetes Mellitus (T2DM) together with a solution for risk stratification, intervention and management. These ML models align with how physicians think about disease management and mitigation, which comprises these four steps: Identify, Stratify, Engage, Measure.
Estimating health benefits of reducing fossil fuel use from improved air quality provides important rationales for carbon emissions abatement. Simulating pollution concentration is a crucial step of the estimation, but traditional approaches often re ly on complicated chemical transport models that require extensive expertise and computational resources. In this study, we develop a novel and succinct machine learning framework that is able to provide precise and robust annual average fine particle (PM2.5) concentration estimations directly from a high-resolution fossil energy use data set. The accessibility and applicability of this framework show great potentials of machine learning approaches for integrated assessment studies. Applications of the framework with Chinese data reveal highly heterogeneous health benefits of reducing fossil fuel use in different sectors and regions in China with a mean of $34/tCO2 and a standard deviation of $84/tCO2. Reducing rural and residential coal use offers the highest co-benefits with a mean of $360/tCO2. Our findings prompt careful policy designs to maximize cost-effectiveness in the transition towards a carbon-neutral energy system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا