ﻻ يوجد ملخص باللغة العربية
In presence of strong winds, wildfires feature nonlinear behavior, possibly inducing fire-spotting. We present a global sensitivity analysis of a new sub-model for turbulence and fire-spotting included in a wildfire spread model based on a stochastic representation of the fireline. To limit the number of model evaluations, fast surrogate models based on generalized Polynomial Chaos (gPC) and Gaussian Process are used to identify the key parameters affecting topology and size of burnt area. This study investigates the application of these surrogates to compute Sobol sensitivity indices in an idealized test case. The wind is known to drive the fire propagation. The results show that it is a more general leading factor that governs the generation of secondary fires. This study also compares the performance of the surrogates for varying size and type of training sets as well as for varying parameterization and choice of algorithms. The best performance was achieved using a gPC strategy based on a sparse least-angle regression (LAR) and a low-discrepancy Haltons sequence. Still, the LAR-based gPC surrogate tends to filter out the information coming from parameters with large length-scale, which is not the case of the cleaning-based gPC surrogate. For both algorithms, sparsity ensures a surrogate can be built using an affordable number of forward model evaluations, while the model response is highly multi-scale and nonlinear. Using a sparse surrogate is thus a promising strategy to analyze new models and its dependency on input parameters in wildfire applications.
This paper presents a mathematical approach to model the effects of phenomena with random nature such as turbulence and fire-spotting into the existing wildfire simulators. The formulation proposes that the propagation of the fire-front is the sum of
In this study, we describe how WRF-Sfire is coupled with WRF-Chem to construct WRFSC, an integrated forecast system for wildfire and smoke prediction. The integrated forecast system has the advantage of not requiring a simple plume-rise model and ass
Wildfire has had increasing impacts on society as the climate changes and the wildland urban interface grows. As such, there is a demand for innovative solutions to help manage fire. Managing wildfire can include proactive fire management such as pre
Quantifying the impact of climate change on future air quality is a challenging subject in air quality studies. An ANN model is employed to simulate hourly O3 concentrations. The model is developed based on hourly monitored values of temperature, sol
A compartment fire (a fire in a room or building) creates temperature gradients and inhomogeneous time-varying temperature, density, and flow fields. This work compared experimental measurements of the room acoustic impulse/frequency response in a ro