ﻻ يوجد ملخص باللغة العربية
For an analytic function $f$ defined on the unit disk $|z|<1$, let $Delta(r,f)$ denote the area of the image of the subdisk $|z|<r$ under $f$, where $0<rle 1$. In 1990, Yamashita conjectured that $Delta(r,z/f)le pi r^2$ for convex functions $f$ and it was finally settled in 2013 by Obradovi{c} and et. al.. In this paper, we consider a class of analytic functions in the unit disk satisfying the subordination relation $zf(z)/f(z)prec (1+(1-2beta)alpha z)/(1-alpha z)$ for $0le beta<1$ and $0<alphale 1$. We prove Yamashitas conjecture problem for functions in this class, which solves a partial solution to an open problem posed by Ponnusamy and Wirths.
Harmonic functions are natural generalizations of conformal mappings. In recent years, a lot of work have been done by some researchers who focus on harmonic starlike functions. In this paper, we aim to introduce two classes of harmonic univalent fun
In this note, we study the boundedness of integral operators $I_{g}$ and $T_{g}$ on analytic Morrey spaces. Furthermore, the norm and essential norm of those operators are given.
In this paper, by making use of a certain family of fractional derivative operators in the complex domain, we introduce and investigate a new subclass $mathcal{P}_{tau,mu}(k,delta,gamma)$ of analytic and univalent functions in the open unit disk $mat
Let $es$ be the family of analytic and univalent functions $f$ in the unit disk $D$ with the normalization $f(0)=f(0)-1=0$, and let $gamma_n(f)=gamma_n$ denote the logarithmic coefficients of $fin {es}$. In this paper, we study bounds for the logarit
We introduce the class of analytic functions $$mathcal{F}(psi):= left{fin mathcal{A}: left(frac{zf(z)}{f(z)}-1right) prec psi(z),; psi(0)=0 right},$$ where $psi$ is univalent and establish the growth theorem with some geometric conditions on $psi$ an