ترغب بنشر مسار تعليمي؟ اضغط هنا

Logarithmic coefficients problems in families related to starlike and convex functions

98   0   0.0 ( 0 )
 نشر من قبل Saminathan Ponnusamy Ph.D
 تاريخ النشر 2018
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Let $es$ be the family of analytic and univalent functions $f$ in the unit disk $D$ with the normalization $f(0)=f(0)-1=0$, and let $gamma_n(f)=gamma_n$ denote the logarithmic coefficients of $fin {es}$. In this paper, we study bounds for the logarithmic coefficients for certain subfamilies of univalent functions. Also, we consider the families $F(c)$ and $G(delta)$ of functions $fin {es}$ defined by $$ {rm Re} left ( 1+frac{zf(z)}{f(z)}right )>1-frac{c}{2}, mbox{ and } , {rm Re} left ( 1+frac{zf(z)}{f(z)}right )<1+frac{delta}{2},quad zin D $$ for some $cin(0,3]$ and $deltain (0,1]$, respectively. We obtain the sharp upper bound for $|gamma_n|$ when $n=1,2,3$ and $f$ belongs to the classes $F(c)$ and $G(delta)$, respectively. The paper concludes with the following two conjectures: begin{itemize} item If $finF (-1/2)$, then $ displaystyle |gamma_n|le frac{1}{n}left(1-frac{1}{2^{n+1}}right)$ for $nge 1$, and $$ sum_{n=1}^{infty}|gamma_{n}|^{2} leq frac{pi^2}{6}+frac{1}{4} ~{rm Li,}_{2}left(frac{1}{4}right) -{rm Li,}_{2}left(frac{1}{2}right), $$ where ${rm Li}_2(x)$ denotes the dilogarithm function. item If $fin G(delta)$, then $ displaystyle |gamma_n|,leq ,frac{delta}{2n(n+1)}$ for $nge 1$. end{itemize}



قيم البحث

اقرأ أيضاً

64 - S. Ponnusamy , N. L. Sharma , 2018
Let $es$ be the class of analytic and univalent functions in the unit disk $|z|<1$, that have a series of the form $f(z)=z+ sum_{n=2}^{infty}a_nz^n$. Let $F$ be the inverse of the function $fines$ with the series expansion %in a disk of radius at lea st $1/4$ $F(w)=f^{-1}(w)=w+ sum_{n=2}^{infty}A_nw^n$ for $|w|<1/4$. The logarithmic inverse coefficients $Gamma_n$ of $F$ are defined by the formula $logleft(F(w)/wright),=,2sum_{n=1}^{infty}Gamma_n(F)w^n$. % In this paper, we determine the logarithmic inverse coefficients bound of $F$ for the class In this paper, we first determine the sharp bound for the absolute value of $Gamma_n(F)$ when $f$ belongs to $es$ and for all $n geq 1$. This result motivates us to carry forward similar problems for some of its important geometric subclasses. In some cases, we have managed to solve this question completely but in some other cases it is difficult to handle for $ngeq 4$. For example, in the case of convex functions $f$, we show that the logarithmic inverse coefficients $Gamma_n(F)$ of $F$ satisfy the inequality [ |Gamma_n(F)|,le , frac{1}{2n} mbox{ for } ngeq 1,2,3 ] and the estimates are sharp for the function $l(z)=z/(1-z)$. Although this cannot be true for $nge 10$, it is not clear whether this inequality could still be true for $4leq nleq 9$.
In the present investigation the authors obtain upper bounds for the second Hankel determinant of the classes bi-starlike and bi-convex functions of order beta.
Harmonic functions are natural generalizations of conformal mappings. In recent years, a lot of work have been done by some researchers who focus on harmonic starlike functions. In this paper, we aim to introduce two classes of harmonic univalent fun ctions of the unit disk, called hereditarily $lambda$-spirallike functions and hereditarily strongly starlike functions, which are the generalizations of $lambda$-spirallike functions and strongly starlike functions, respectively. We note that a relation can be obtained between this two classes. We also investigate analytic characterization of hereditarily spirallike functions and uniform boundedness of hereditarily strongly starlike functions. Some coefficient conditions are given for hereditary strong starlikeness and hereditary spirallikeness. As a simple application, we consider a special form of harmonic functions.
In this paper, two new subclasses of bi-univalent functions related to conic domains are defined by making use of symmetric $q$-differential operator. The initial bounds for Fekete-Szego inequality for the functions $f$ in these classes are estimated.
I. M. Milin proposed, in his 1971 paper, a system of inequalities for the logarithmic coefficients of normalized univalent functions on the unit disk of the complex plane. This is known as the Lebedev-Milin conjecture and implies the Robertson conjec ture which in turn implies the Bieberbach conjecture. In 1984, Louis de Branges settled the long-standing Bieberbach conjecture by showing the Lebedev-Milin conjecture. Recently, O.~Roth proved an interesting sharp inequality for the logarithmic coefficients based on the proof by de Branges. In this paper, following Roths ideas, we will show more general sharp inequalities with convex sequences as weight functions and then establish several consequences of them. We also consider the inequality with the help of de Branges system of linear ODE for non-convex sequences where the proof is partly assisted by computer. Also, we apply some of those inequalities to improve previously known results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا