ﻻ يوجد ملخص باللغة العربية
A geometric approach to the friction phenomena is presented. It is based on the holographic view which has recently been popular in the theoretical physics community. We see the system in one-dimension-higher space. The heat-producing phenomena are most widely treated by using the non-equilibrium statistical physics. We take 2 models of the earthquake. The dissipative systems are here formulated from the geometric standpoint. The statistical fluctuation is taken into account by using the (generalized) Feynmans path-integral.
In this work the non-equilibrium density operator approach introduced by Zubarev more than 50 years ago to describe quantum systems at local thermodynamic equilibrium is revisited. This method - which was used to obtain the first Kubo formula of shea
The non-perturbative renormalization-group approach is extended to lattice models, considering as an example a $phi^4$ theory defined on a $d$-dimensional hypercubic lattice. Within a simple approximation for the effective action, we solve the flow e
We propose a modification of the non-perturbative renormalization-group (NPRG) which applies to lattice models. Contrary to the usual NPRG approach where the initial condition of the RG flow is the mean-field solution, the lattice NPRG uses the (loca
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be general
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use