ﻻ يوجد ملخص باللغة العربية
The inverse problem for a disordered system involves determining the interparticle interaction parameters consistent with a given set of experimental data. Recently, Rutledge has shown (Phys. Rev. E63, 021111 (2001)) that such problems can be generally expressed in terms of a grand canonical ensemble of polydisperse particles. Within this framework, one identifies a polydisperse attribute (`pseudo-species) $sigma$ corresponding to some appropriate generalized coordinate of the system to hand. Associated with this attribute is a composition distribution $barrho(sigma)$ measuring the number of particles of each species. Its form is controlled by a conjugate chemical potential distribution $mu(sigma)$ which plays the role of the requisite interparticle interaction potential. Simulation approaches to the inverse problem involve determining the form of $mu(sigma)$ for which $barrho(sigma)$ matches the available experimental data. The difficulty in doing so is that $mu(sigma)$ is (in general) an unknown {em functional} of $barrho(sigma)$ and must therefore be found by iteration. At high particle densities and for high degrees of polydispersity, strong cross coupling between $mu(sigma)$ and $barrho(sigma)$ renders this process computationally problematic and laborious. Here we describe an efficient and robust {em non-equilibrium} simulation scheme for finding the equilibrium form of $mu[barrho(sigma)]$. The utility of the method is demonstrated by calculating the chemical potential distribution conjugate to a specific log-normal distribution of particle sizes in a polydisperse fluid.
We present a method for Monte Carlo sampling on systems with discrete variables (focusing in the Ising case), introducing a prior on the candidate moves in a Metropolis-Hastings scheme which can significantly reduce the rejection rate, called the red
We consider the use of a Kinetic Monte Carlo approach for the description of non-equilibrium bosonic systems, taking non-resonantly excited exciton-polariton condensates and bosonic cascade lasers as examples. In the former case, the considered appro
Population annealing is a recent addition to the arsenal of the practitioner in computer simulations in statistical physics and beyond that is found to deal well with systems with complex free-energy landscapes. Above all else, it promises to deliver
Spin ice materials, such as Dy2Ti2O7 and Ho2Ti2O7, have been the subject of much interest for over the past fifteen years. Their low temperature strongly correlated state can be mapped onto the proton disordered state of common water ice and, consequ
Efficient sampling of complex high-dimensional probability densities is a central task in computational science. Machine Learning techniques based on autoregressive neural networks have been recently shown to provide good approximations of probabilit